Search
- Filter Results
- Location
- Classification
- Include attachments
- https://stats.libretexts.org/Courses/Fresno_City_College/New_FCC_DS_21_Finite_Mathematics_-_Spring_2023/09%3A_Linear_Programming_-_The_Simplex_Method/9.04%3A_Chapter_Review\text { Maximize } & \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3} \leq 32 \\ \text { Maximize } & \mathrm{z}...\text { Maximize } & \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3} \leq 32 \\ \text { Maximize } & \mathrm{z}= \mathrm{x}_{1}+6 \mathrm{x}_{2}+8 \mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \quad \leq 1800 \\ \text { subject to } & \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3} \\ \text { subject to } & 2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \geq 25 \\
- https://stats.libretexts.org/Under_Construction/Purgatory/FCC_-_Finite_Mathematics_-_Spring_2023/09%3A_Linear_Programming_-_The_Simplex_Method/9.04%3A_Chapter_Review\text { Maximize } & \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3} \leq 32 \\ \text { Maximize } & \mathrm{z}...\text { Maximize } & \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3} \leq 32 \\ \text { Maximize } & \mathrm{z}= \mathrm{x}_{1}+6 \mathrm{x}_{2}+8 \mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \quad \leq 1800 \\ \text { subject to } & \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3} \\ \text { subject to } & 2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \geq 25 \\
- https://stats.libretexts.org/Sandboxes/JolieGreen/Finite_Mathematics_-_Spring_2023_-_OER/09%3A_Linear_Programming_-_The_Simplex_Method/9.04%3A_Chapter_Review\text { Maximize } & \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3} \leq 32 \\ \text { Maximize } & \mathrm{z}...\text { Maximize } & \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3} \leq 32 \\ \text { Maximize } & \mathrm{z}= \mathrm{x}_{1}+6 \mathrm{x}_{2}+8 \mathrm{x}_{3} \\ \text { subject to } & 4 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \quad \leq 1800 \\ \text { subject to } & \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3} \\ \text { subject to } & 2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \geq 25 \\