Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 3 results
  • https://stats.libretexts.org/Courses/Fresno_City_College/New_FCC_DS_21_Finite_Mathematics_-_Spring_2023/05%3A_Introduction_to_Calculus/5.E%3A_Introduction_to_Calculus_(Exercises)
    27) Based on the pattern you observed in the exercises above, make a conjecture as to the limit of \(f(x)=(1+x)^{\frac{6}{x}}, g(x)=(1+x)^{\frac{7}{x}},\) and \(h(x)=(1+x)^{\frac{n}{x}}.\) \(\lim \lim...27) Based on the pattern you observed in the exercises above, make a conjecture as to the limit of \(f(x)=(1+x)^{\frac{6}{x}}, g(x)=(1+x)^{\frac{7}{x}},\) and \(h(x)=(1+x)^{\frac{n}{x}}.\) \(\lim \limits_{ x→−1^−}\dfrac{| x+1 |}{x+1}=\dfrac{−(x+1)}{(x+1)}=−1\) and \(\lim \limits_{ x \to −1^+}\dfrac{| x+1 |}{x+1}=\dfrac{(x+1)}{(x+1)}=1\); since the right-hand limit does not equal the left-hand limit, \(\lim \limits_{ x \to −1}\dfrac{|x+1|}{x+1}\) does not exist.
  • https://stats.libretexts.org/Sandboxes/JolieGreen/Finite_Mathematics_-_Spring_2023_-_OER/05%3A_Introduction_to_Calculus/5.E%3A_Introduction_to_Calculus_(Exercises)
    27) Based on the pattern you observed in the exercises above, make a conjecture as to the limit of \(f(x)=(1+x)^{\frac{6}{x}}, g(x)=(1+x)^{\frac{7}{x}},\) and \(h(x)=(1+x)^{\frac{n}{x}}.\) \(\lim \lim...27) Based on the pattern you observed in the exercises above, make a conjecture as to the limit of \(f(x)=(1+x)^{\frac{6}{x}}, g(x)=(1+x)^{\frac{7}{x}},\) and \(h(x)=(1+x)^{\frac{n}{x}}.\) \(\lim \limits_{ x→−1^−}\dfrac{| x+1 |}{x+1}=\dfrac{−(x+1)}{(x+1)}=−1\) and \(\lim \limits_{ x \to −1^+}\dfrac{| x+1 |}{x+1}=\dfrac{(x+1)}{(x+1)}=1\); since the right-hand limit does not equal the left-hand limit, \(\lim \limits_{ x \to −1}\dfrac{|x+1|}{x+1}\) does not exist.
  • https://stats.libretexts.org/Under_Construction/Purgatory/FCC_-_Finite_Mathematics_-_Spring_2023/05%3A_Introduction_to_Calculus/5.E%3A_Introduction_to_Calculus_(Exercises)
    27) Based on the pattern you observed in the exercises above, make a conjecture as to the limit of \(f(x)=(1+x)^{\frac{6}{x}}, g(x)=(1+x)^{\frac{7}{x}},\) and \(h(x)=(1+x)^{\frac{n}{x}}.\) \(\lim \lim...27) Based on the pattern you observed in the exercises above, make a conjecture as to the limit of \(f(x)=(1+x)^{\frac{6}{x}}, g(x)=(1+x)^{\frac{7}{x}},\) and \(h(x)=(1+x)^{\frac{n}{x}}.\) \(\lim \limits_{ x→−1^−}\dfrac{| x+1 |}{x+1}=\dfrac{−(x+1)}{(x+1)}=−1\) and \(\lim \limits_{ x \to −1^+}\dfrac{| x+1 |}{x+1}=\dfrac{(x+1)}{(x+1)}=1\); since the right-hand limit does not equal the left-hand limit, \(\lim \limits_{ x \to −1}\dfrac{|x+1|}{x+1}\) does not exist.

Support Center

How can we help?