Plotting the graph of \(g(x) = \log_{2}(x)\) from the points in the table , notice that as the input values for \(x\) approach zero, the output of the function grows very large in the negative directi...Plotting the graph of \(g(x) = \log_{2}(x)\) from the points in the table , notice that as the input values for \(x\) approach zero, the output of the function grows very large in the negative direction, indicating a vertical asymptote at \(x = 0\). In other words, if the point with \(x = h\) and \(y = k\) is on the graph of \(y = b^x\), then the point with \(x = k\) and \(y = h\) lies on the graph of \(y = \log_{b} (x)\)
Plotting the graph of \(g(x) = \log_{2}(x)\) from the points in the table , notice that as the input values for \(x\) approach zero, the output of the function grows very large in the negative directi...Plotting the graph of \(g(x) = \log_{2}(x)\) from the points in the table , notice that as the input values for \(x\) approach zero, the output of the function grows very large in the negative direction, indicating a vertical asymptote at \(x = 0\). In other words, if the point with \(x = h\) and \(y = k\) is on the graph of \(y = b^x\), then the point with \(x = k\) and \(y = h\) lies on the graph of \(y = \log_{b} (x)\)
Plotting the graph of \(g(x) = \log_{2}(x)\) from the points in the table , notice that as the input values for \(x\) approach zero, the output of the function grows very large in the negative directi...Plotting the graph of \(g(x) = \log_{2}(x)\) from the points in the table , notice that as the input values for \(x\) approach zero, the output of the function grows very large in the negative direction, indicating a vertical asymptote at \(x = 0\). In other words, if the point with \(x = h\) and \(y = k\) is on the graph of \(y = b^x\), then the point with \(x = k\) and \(y = h\) lies on the graph of \(y = \log_{b} (x)\)