If \(x\) = the number of months that have passed and \(y\) is the number of users, the number of users after \(x\) months is \(y = 10000+1500x\). For each site, use the function to calculate the numbe...If \(x\) = the number of months that have passed and \(y\) is the number of users, the number of users after \(x\) months is \(y = 10000+1500x\). For each site, use the function to calculate the number of users at the end of the first year, to verify the values in the table. A population of bacteria is given by the function \(y = f(t) = 100(2^t)\), where \(t\) is time measured in hours and \(y\) is the number of bacteria in the population.
If \(x\) = the number of months that have passed and \(y\) is the number of users, the number of users after \(x\) months is \(y = 10000+1500x\). For each site, use the function to calculate the numbe...If \(x\) = the number of months that have passed and \(y\) is the number of users, the number of users after \(x\) months is \(y = 10000+1500x\). For each site, use the function to calculate the number of users at the end of the first year, to verify the values in the table. A population of bacteria is given by the function \(y = f(t) = 100(2^t)\), where \(t\) is time measured in hours and \(y\) is the number of bacteria in the population.
If \(x\) = the number of months that have passed and \(y\) is the number of users, the number of users after \(x\) months is \(y = 10000+1500x\). For each site, use the function to calculate the numbe...If \(x\) = the number of months that have passed and \(y\) is the number of users, the number of users after \(x\) months is \(y = 10000+1500x\). For each site, use the function to calculate the number of users at the end of the first year, to verify the values in the table. A population of bacteria is given by the function \(y = f(t) = 100(2^t)\), where \(t\) is time measured in hours and \(y\) is the number of bacteria in the population.