&\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\hat{p q}}{n}\right)} \\ n=p∗⋅q∗(zα/2E)2 If p is not given use p* = 0.5. \(\bar{x} \pm z_{\frac{\al...&\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\hat{p q}}{n}\right)} \\ n=p∗⋅q∗(zα/2E)2 If p is not given use p* = 0.5. ˉx±zα2(σ√n) TI-84: z α/2 = invNorm(1–area/2,0,1) TI-84: t α/2 = invT(1–area/2,df) ˉx±tα/2(s√n)n=(zα/2⋅σE)2
Confidence Interval for One Proportion &\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\hat{p q}}{n}\right)} \\ n=p∗⋅q∗(zα/2E)2 If p is not given u...Confidence Interval for One Proportion &\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\hat{p q}}{n}\right)} \\ n=p∗⋅q∗(zα/2E)2 If p is not given use p* = 0.5. Confidence Interval for One Mean ˉx±zα2(σ√n) TI-84: z α/2 = invNorm(1–area/2,0,1) ˉx±tα/2(s√n)n=(zα/2⋅σE)2