Search Back to top Filter ResultsLocationThere are no locations to filter byClassificationArticle typeBook or UnitChapterSection or PageN/AN/AAuthorDavid LaneAlexander AueJohn H. McDonaldOpenStaxOpenIntro StatisticsDebashis PaulLarry GreenDiane KiernanAlexey ShipunovPeter KaslikKathryn KozakDavid LiljaKristin KuterFoster et al.Jenkins-Smith et al.Grinstead & SnellRussell A. PoldrackThomas K. TiemannDanielle NavarroJonathan A. PoritzKyle SiegristPaul PfeifferMatthew J. C. CrumpMichelle OjaRachel WebbAlex ReinhartMaurice A. GeraghtyAnonymousErich C Fein, John Gilmour, Tayna Machin, and Liam HendryGordon E. SartyPenn State's Department of StatisticsMark GreenwoodYang Lydia YangBill PelzValerie WattsNancy IkedaLinda R. Cote, Rupa G. Gordon, Chrislyn E. Randell, Judy Schmitt, and Helena MarvinKlaire SomorayHannah Seidler-WrightMichael R DohmChristina R. PeterLumen LearningRoger ClarkMikaila Mariel Lemonik ArthurMikaila Mariel Lemonik Arthur and Roger ClarkYvonne AnthonyJaeyong ChoiCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLShow TOCyesnoEmbed JupyterpythonoctaversagemathTranscludedyesOER program or PublisherCollege of the Canyons - Zero Textbook Cost ProgramASCCC OERI ProgramCK-12OpenStaxGALILEOOpenSUNYMIT OpenCourseWareVirginia Tech Libraries' Open Education InitiativeThe Publisher Who Must Not Be NamedeCampusOntarioWAC ClearinghouseBC CampusLumenOpen OregonOpenStax CNXPDXOpenEvergreen Valley CollegeAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Include attachmentsContent TypeDocumentImageOther Searching inAll resultsAbout 2 results6.5: Chapter 6 Formulashttps://stats.libretexts.org/Workbench/Introduction_to_Statistical_Methods_(Yuba_College)/06%3A_Discrete_Probability_Distributions/6.05%3A_Chapter_6_FormulasDiscrete Distribution Variance: σ 2 = ∑(x i 2 ∙P(x i )) – μ 2 Geometric Distribution: P(X = x) = p ∙ q (x – 1) , x = 1, 2, 3, … Binomial Distribution: P(X = x) = n C x ·p x ·q (n-x ) , x = 0, 1, 2, … ...Discrete Distribution Variance: σ 2 = ∑(x i 2 ∙P(x i )) – μ 2 Geometric Distribution: P(X = x) = p ∙ q (x – 1) , x = 1, 2, 3, … Binomial Distribution: P(X = x) = n C x ·p x ·q (n-x ) , x = 0, 1, 2, … , n Hypergeometric Distribution: P(X = x) = \(\frac{a C_{x} \cdot {}_b C_{n-x}}{ _{N} C_{n}}\) Unit Change for Poisson Distribution: New μ = old μ(\(\frac{\text { new units }}{\text { old units }}\)) Poisson Distribution: P(X = x) = \(\frac{e^{-\mu} \mu^{x}}{x !}\)More4.6: Discrete Probability Formulashttps://stats.libretexts.org/Workbench/Statistics_for_Behavioral_Science_Majors/04%3A_Discrete_Probability_Distributions/4.06%3A_Discrete_Probability_FormulasDiscrete Distribution Mean: μ = Σ(x i ∙ P(x i )) Discrete Distribution Variance: σ 2 = ∑(x i 2 ∙P(x i )) – μ 2 Geometric Distribution: P(X = x) = p ∙ q (x – 1) , x = 1, 2, 3, … Binomial Distribution: ...Discrete Distribution Mean: μ = Σ(x i ∙ P(x i )) Discrete Distribution Variance: σ 2 = ∑(x i 2 ∙P(x i )) – μ 2 Geometric Distribution: P(X = x) = p ∙ q (x – 1) , x = 1, 2, 3, … Binomial Distribution: P(X = x) = n C x ·p x ·q (n-x ) , x = 0, 1, 2, … , n Hypergeometric Distribution: P(X = x) = \(\frac{a C_{x} \cdot {}_b C_{n-x}}{ _{N} C_{n}}\) Poisson Distribution: P(X = x) = \(\frac{e^{-\mu} \mu^{x}}{x !}\)MoreShow more results