In this case, \(s(t)=0\) represents the time at which the back of the car is at the garage door, so \(s(0)=−4\) is the starting position of the car, 4 feet inside the garage. Suppose the price-demand ...In this case, \(s(t)=0\) represents the time at which the back of the car is at the garage door, so \(s(0)=−4\) is the starting position of the car, 4 feet inside the garage. Suppose the price-demand and cost functions for the production of cordless drills is given respectively by \(p=143−0.03x\) and \(C(x)=75,000+65x\), where \(x\) is the number of cordless drills that are sold at a price of \(p\) dollars per drill and \(C(x)\) is the cost of producing \(x\) cordless drills.