Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Book%3A_Visual_Statistics_Use_R_(Shipunov)/07%3A_Multidimensional_Data_-_Analysis_of_Structure/7.05%3A_Deep_Learning
    classification) ## and provide data and response variable task <- makeClassifTask(data=iris, target="Species") ## 2) Define the learner, use listLearners()[,1] ## Choose a specific algorithm lrn <- ma...classification) ## and provide data and response variable task <- makeClassifTask(data=iris, target="Species") ## 2) Define the learner, use listLearners()[,1] ## Choose a specific algorithm lrn <- makeLearner("classif.ctree") n = nrow(iris) train.set <- sample(n, size=2/3*n) test.set <- setdiff(1:n, train.set) ## 3) Fit the model ## Train the learner on the task using a random subset ## of the data as training set model <- train(lrn, task, subset=train.set) ## 4) Make predictions ## Predict va…

Support Center

How can we help?