# 3: Descriptive Statistics

- Page ID
- 22021

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

- 3.1: Introduction to Descriptive Statistics
- Let's start describing distributions of data, instead of only graphing them!

- 3.2: Math Refresher
- Whether you took math last semester or 40 years ago, this refresher will orient you to what you'll need to remember to complete the statistical analyses later in your class.

- 3.4: Interpreting All Three Measures of Central Tendency
- If you know all three measures of central tendency, what do you really know?

- 3.5: Introduction to Measures of Variability
- Now, measures of how different each score is from the center.

- 3.6: Introduction to Standard Deviations and Calculations
- What's the standard measure of variability? Standard deviations, of course!

- 3.7: Practice SD Formula and Interpretation
- Do you know how to use the standard deviation formula? Let's practice!

- 3.8: Interpreting Standard Deviations
- But what can standard deviations show us about a distribution of data?

- 3.9: Putting It All Together- SD and 3 M's
- What can we learn from looking at all three measures of central tendency AND the standard deviation? How can we use this information to predict or understand the shape of our distribution of data?

- 3.10: Measures of Central Tendency and Variability Exercises
- A little practice?