# 4.2: Expected Value and Variance of Continuous Random Variables

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We now consider the expected value and variance for continuous random variables. Note that the interpretation of each is the same as in the discrete setting, but we now have a different method of calculating them in the continuous setting.

### Definition $$\PageIndex{1}$$

If $$X$$ is a continuous random variable with pdf $$f(x)$$, then the expected value (or mean) of $$X$$ is given by

$$\mu = \mu_X = \text{E}[X] = \int\limits^{\infty}_{-\infty}\! x\cdot f(x)\, dx.\notag$$

The formula for the expected value of a continuous random variable is the continuous analog of the expected value of a discrete random variable, where instead of summing over all possible values we integrate (recall Sections 3.4 & 3.5).

For the variance of a continuous random variable, the definition is the same and we can still use the alternative formula given by Theorem 3.5.1, only we now integrate to calculate the value:
$$\text{Var}(X) = \text{E}[X^2] - \mu^2 = \left(\int\limits^{\infty}_{-\infty}\! x^2\cdot f(x)\, dx\right) - \mu^2\notag$$

### Example $$\PageIndex{1}$$

Consider again the context of Example 4.1.1, where we defined the continuous random variable $$X$$ to denote the time a person waits for an elevator to arrive. The pdf of $$X$$ was given by
$$f(x) = \left\{\begin{array}{l l} x, & \text{for}\ 0\leq x\leq 1 \\ 2-x, & \text{for}\ 1< x\leq 2 \\ 0, & \text{otherwise} \end{array}\right.\notag$$
Applying Definition 4.2.1, we compute the expected value of $$X$$:
$$\text{E}[X] = \int\limits^1_0\! x\cdot x\, dx + \int\limits^2_1\! x\cdot (2-x)\, dx = \int\limits^1_0\! x^2\, dx + \int\limits^2_1\! (2x - x^2)\, dx = \frac{1}{3} + \frac{2}{3} = 1.\notag$$
Thus, we expect a person will wait 1 minute for the elevator on average. Figure 1 demonstrates the graphical representation of the expected value as the center of mass of the pdf. Figure 1: The red arrow represents the center of mass, or the expected value, of $$X$$.

Now we calculate the variance and standard deviation of $$X$$, by first finding the expected value of $$X^2$$.
$$\text{E}[X^2] = \int\limits^1_0\! x^2\cdot x\, dx + \int\limits^2_1\! x^2\cdot (2-x)\, dx = \int\limits^1_0\! x^3\, dx + \int\limits^2_1\! (2x^2 - x^3)\, dx = \frac{1}{4} + \frac{11}{12} = \frac{7}{6}.\notag$$
Thus, we have
\begin{align*}
\text{Var}(X) &= \text{E}[X^2] - \mu^2 = \frac{7}{6} - 1 = \frac{1}{6} \\
\Rightarrow\ \text{SD}(X) &= \sqrt{\text{Var}(X)} = \frac{1}{\sqrt{6}} \approx 0.408
\end{align*}

This page titled 4.2: Expected Value and Variance of Continuous Random Variables is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.