Skip to main content
Statistics LibreTexts

11.R: Footnotes and References

  • Page ID
    37412
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Footnotes

    1. R. A. Howard, Dynamic Probabilistic Systems, vol. 1 (New York: John Wiley and Sons, 1971).
    2. J. G. Kemeny, J. L. Snell, G. L. Thompson, Introduction to Finite Mathematics, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1974).
    3. P. and T. Ehrenfest, "Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem," Physikalishce Zeitschrift, vol. 8 (1907), pp. 311-314.
    4. S. Sawyer, "Results for The Stepping Stone Model for Migration in Population Genetics," Annals of Probability, vol. 4 (1979), pp. 699-728.
    5. H. Gonshor, "An Application of Random Walk to a Problem in Population Genetics," Amercan Math Monthly, vol. 94 (1987), pp. 668-671
    6. Private communication.
    7. Roberts, Discrete Mathematical Models (Englewood Cliffs, NJ: Prentice Hall, 1976).
    8. W. W. Leontief, Input-Output Economics (Oxford: Oxford University Press, 1966).
    9. L. J. Guibas and A. M. Odlyzko, "String Overlaps, Pattern Matching, and Non-transitive Games," Journal of Combinatorial Theory, Series A, vol. 30 (1981), pp. 183-208.
    10. Penney, "Problem: Penney-Ante," Journal of Recreational Math, vol. 2 (1969), p. 241.
    11. M. Gardner, "Mathematical Games," Scientific American, vol. 10 (1974), pp. 120-125.Guibas and Odlyzko, op. cit.
    12. E. Seneta, Non-Negative Matrices: An Introduction to Theory and Applications, Wiley, New York, 1973, pp. 52-54.
    13. Engle, Wahrscheinlichkeitsrechnung und Statistik, vol. } 2 \text { (Stuttgart: Klett Verlag, 1976). 
    14. E. G. Coffman, J. T. Kaduta, and L. A. Shepp, "On the Asymptotic Optimality of First Storage Allocation," IEEE Trans. Software Engineering, vol. II (1985), pp. 235-239.
    15. Doeblin, "Expose de la Theorie des Chaines Simple Constantes de Markov a un Nombre Fini d'Etats," Rev. Mach. de l'Union Interbalkanique, vol. 2 (1937), pp. 77-105.
    16. Lindvall, Lectures on the Coupling Method (New York: Wiley 1992). 
    17. See Dictionary of Scientific Biography, ed. C. C. Gillespie (New York: Scribner's Sons, 1970), pp. 124-130.
    18. A. A. Markov, "An Example of Statistical Analysis of the Text of Eugene Onegin Illustrating the Association of Trials into a Chain," Bulletin de l'Acadamie Imperiale des Sciences de St. Petersburg, ser. 6, vol. 7 (1913), pp. 153-162.
    19. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Urbana: Univ. of Illinois Press, 1964).
    20. M. Frechet, "Théorie des événements en chaine dans le cas d'un nombre fini d'états possible," in Recherches théoriques Modernes sur le calcul des probabilités, vol. 2 (Paris, 1938).
    21. J. G. Kemeny and J. L. Snell, Finite Markov Chains.
    22. Private communication.
    23. Private communication.

    11.R: Footnotes and References is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?