LaTeX math markup

[ "article:topic" ]

Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 $$a^2$$ $$a^2 \,\!$$
Subscript a_2 $$a_2$$ $$a_2 \,\!$$
Grouping a^{2+2} $$a^{2+2}$$ $$a^{2+2}\,\!$$
a_{i,j} $$a_{i,j}$$ $$a_{i,j}\,\!$$
Combining sub & super x_2^3 $$x_2^3$$
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b $$\sideset{_1^2}{_3^4}\prod_a^b$$
{}_1^2\!\Omega_3^4 $${}_1^2\!\Omega_3^4$$
Stacking \overset{\alpha}{\omega} $$\overset{\alpha}{\omega}$$
\underset{\alpha}{\omega} $$\underset{\alpha}{\omega}$$
\overset{\alpha}{\underset{\gamma}{\omega}} $$\overset{\alpha}{\underset{\gamma}{\omega}}$$
\stackrel{\alpha}{\omega} $$\stackrel{\alpha}{\omega}$$
Derivative (forced PNG) x', y, f', f\!   $$x', y'', f', f''\!$$
Derivative (f in italics may overlap primes in HTML) x', y, f', f $$x', y'', f', f''$$ $$x', y'', f', f''\!$$
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} $$x^\prime, y^{\prime\prime}$$ $$x^\prime, y^{\prime\prime}\,\!$$
Derivative (wrong in PNG) x\prime, y\prime\prime $$x\prime, y\prime\prime$$ $$x\prime, y\prime\prime\,\!$$
Derivative dots \dot{x}, \ddot{x} $$\dot{x}, \ddot{x}$$
Underlines, overlines, vectors \hat a \ \bar b \ \vec c $$\hat a \ \bar b \ \vec c$$
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} $$\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}$$
\overline{g h i} \ \underline{j k l} $$\overline{g h i} \ \underline{j k l}$$
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C $$A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C$$
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} $$\overbrace{ 1+2+\cdots+100 }^{5050}$$
Underbraces \underbrace{ a+b+\cdots+z }_{26} $$\underbrace{ a+b+\cdots+z }_{26}$$
Sum \sum_{k=1}^N k^2 $$\sum_{k=1}^N k^2$$
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2  $$\textstyle \sum_{k=1}^N k^2$$
Product \prod_{i=1}^N x_i $$\prod_{i=1}^N x_i$$
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i $$\textstyle \prod_{i=1}^N x_i$$
Coproduct \coprod_{i=1}^N x_i $$\coprod_{i=1}^N x_i$$
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i $$\textstyle \coprod_{i=1}^N x_i$$
Limit \lim_{n \to \infty}x_n $$\lim_{n \to \infty}x_n$$
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n $$\textstyle \lim_{n \to \infty}x_n$$
Integral \int\limits_{-N}^{N} e^x\, dx $$\int\limits_{-N}^{N} e^x\, dx$$
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx $$\textstyle \int\limits_{-N}^{N} e^x\, dx$$
Double integral \iint\limits_{D} \, dx\,dy $$\iint\limits_{D} \, dx\,dy$$
Triple integral \iiint\limits_{E} \, dx\,dy\,dz $$\iiint\limits_{E} \, dx\,dy\,dz$$
Quadruple integral \iiiint\limits_{F} \, dx\,dy\,dz\,dt $$\iiiint\limits_{F} \, dx\,dy\,dz\,dt$$
Path integral \oint\limits_{C} x^3\, dx + 4y^2\, dy $$\oint\limits_{C} x^3\, dx + 4y^2\, dy$$
Intersections \bigcap_1^{n} p $$\bigcap_1^{n} p$$
Unions \bigcup_1^{k} p $$\bigcup_1^{k} p$$

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 $$\frac{2}{4}=0.5$$
Small Fractions \tfrac{2}{4} = 0.5 $$\tfrac{2}{4} = 0.5$$
Large (normal) Fractions \dfrac{2}{4} = 0.5 $$\dfrac{2}{4} = 0.5$$
Large (nested) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a $$\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a$$
Binomial coefficients \binom{n}{k} $$\binom{n}{k}$$
Small Binomial coefficients \tbinom{n}{k} $$\tbinom{n}{k}$$
Large (normal) Binomial coefficients \dbinom{n}{k} $$\dbinom{n}{k}$$
Matrices
\begin{matrix}
x & y \\
z & v
\end{matrix}
$$\begin{matrix} x & y \\ z & v \end{matrix}$$
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
$$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
$$\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}$$
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}
$$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}$$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
$$\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}$$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
$$\begin{pmatrix} x & y \\ z & v \end{pmatrix}$$
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)

$$\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)$$
Case distinctions
f(n) =
\begin{cases}
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
$$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$$
Multiline equations
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}

\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$$\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$$
Multiline equations (more)
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$$\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$$
Breaking up a long expression so that it wraps when necessary

$f(x) \,\!$
$= \sum_{n=0}^\infty a_n x^n$
$= a_0+a_1x+a_2x^2+\cdots$



$$f(x) \,\!$$$$= \sum_{n=0}^\infty a_n x^n$$$$= a_0 +a_1x+a_2x^2+\cdots$$

Simultaneous equations
\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
$$\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}$$

Contributors

Template:ContribSklogWiki