Skip to main content
Statistics LibreTexts

5.8: Dividing Fractions

  • Page ID
    48772
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Suppose that you have four pizzas and each of the pizzas has been sliced into eight equal slices. Therefore, each slice of pizza represents \(\frac{1}{8}\) of a whole pizza.

    Screen Shot 2019-08-30 at 2.22.06 PM.png
    Figure \(\PageIndex{1}\): One slice of pizza is \(\frac{1}{8}\) of one whole pizza.

    Now for the question: How many one-eighths are there in four? This is a division statement. To find how many one-eighths there are in 4, divide 4 by \(\frac{1}{8}\). That is,

    Number of one-eighths in four = 4 ÷ \(\frac{1}{8}\).

    On the other hand, to find the number of one-eights in four, Figure \(\PageIndex{1}\) clearly demonstrates that this is equivalent to asking how many slices of pizza are there in four pizzas. Since there are 8 slices per pizza and four pizzas,

    Number of pizza slices = 4 · 8.

    The conclusion is the fact that 4 ÷ \(\frac{1}{8}\) is equivalent to 4 · 8. That is,

    \[\begin{align*} 4 ÷ \frac{1}{8} &= 4 \cdot 8 \\[4pt] &= 32. \end{align*}\]

    Therefore, we conclude that there are 32 one-eighths in 4.

    Reciprocals

    Multiplicative Inverse Property

    Let \(\dfrac{a}{b}\) be any fraction. The number \(\dfrac{b}{a}\) is called the multiplicative inverse or reciprocal of \(\dfrac{a}{b}\). The product of reciprocals is 1.

    \[ \frac{a}{b} \cdot \frac{b}{a} = 1\nonumber \]

    Note: To find the multiplicative inverse (reciprocal) of a number, simply invert the number (turn it upside down).

    For example, the number \(\frac{1}{8}\) is the multiplicative inverse (reciprocal) of 8 because

    \[ 8 \cdot \frac{1}{8} = 1.\nonumber \]

    Note that 8 can be thought of as \(\frac{8}{1}\). Invert this number (turn it upside down) to find its multiplicative inverse (reciprocal) \(\frac{1}{8}\).

    Example \(\PageIndex{1}\)

    Find the reciprocals of: (a) \(\dfrac{2}{3}\) and (b) 12.

    Solution

    1. Because \( \frac{2}{3} \cdot \frac{3}{2} = 1\), the reciprocal of \(\dfrac{2}{3}\) is \(\dfrac{3}{2}\).
    2. Because \( 12 \cdot \left(  \frac{1}{12} \right) = 1\), the reciprocal of 12 is \(\dfrac{1}{12}\). Again, note that we simply inverted the number 12 (understood to equal \(\frac{12}{1}\)) to get its reciprocal \(\frac{1}{12}\).

    Try It \(\PageIndex{1}\)

    Find the reciprocals of: (a) \(\dfrac{3}{7}\) and (b) 15

    Answer

    (a) \(\dfrac{7}{3}\), (b) \(\dfrac{1}{15}\)

    Division

    Recall that we computed the number of one-eighths in four by doing this calculation:

    \[ \begin{align*} 4 ÷ \frac{1}{8} &= 4 · 8 \\[4pt] &= 32.\end{align*}\]

    Note how we inverted the divisor (second number), then changed the division to multiplication. This motivates the following definition of division.

    Division Definition

    If \(\dfrac{a}{b}\) and \(\dfrac{c}{d}\) are any fractions, then

    \[ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}.\nonumber \]

    That is, we invert the divisor (second number) and change the division to multiplication. Note: We like to use the phrase “invert and multiply” or "multiply by the reciprocal" as a memory aid for this definition.

    Example \(\PageIndex{2}\)

    Divide \(\dfrac{1}{2}\) by \(\dfrac{3}{5}\).

    Solution

    To divide \(\dfrac{1}{2}\) by \(\dfrac{3}{5}\), invert the divisor (second number), then multiply.

    \[ \begin{align*} \frac{1}{2} \div \frac{3}{5} &= \frac{1}{2} \cdot \frac{5}{3} ~ && \textcolor{red}{ \text{ Invert the divisor (second number).}} \\[4pt] &= \frac{5}{6} ~&& \textcolor{red}{ \text{ Multiply.}} \end{align*}\]

    Try It \(\PageIndex{2}\)

    Divide: \( \dfrac{2}{3} \div \dfrac{10}{3} \)

    Answer

    \(\dfrac{1}{5}\)

    Example \(\PageIndex{3}\)

    Simplify the following expressions: (a) 3 ÷ \(\dfrac{2}{3}\) and (b) \(\dfrac{4}{5}\) ÷ 5.

    Solution

    In each case, invert the divisor (second number), then multiply.

    1. Note that 3 is understood to be \(\dfrac{3}{1}\).

    \[ \begin{align*} 3 \div \frac{2}{3} &= \frac{3}{1} \cdot \frac{3}{2} ~ && \textcolor{red}{ \text{ Invert the divisor (second number).}} \\[4pt] &= \frac{9}{2} ~ && \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \end{align*} \]

    1. Note that 5 is understood to be \(\dfrac{5}{1}\).

    \[ \begin{align*} \frac{4}{5} \div 5 &= \frac{4}{5} \cdot \frac{1}{5} ~ && \textcolor{red}{ \text{ Invert the divisor (second number).}} \\[4pt] &= \frac{4}{25} ~ && \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \end{align*}\]

    Try It \(\PageIndex{3}\)

    Divide: \( \dfrac{15}{7} \div 5 \)

    Answer

    \(\dfrac{3}{7}\)

    After inverting, you may need to factor and cancel.

    Example \(\PageIndex{4}\)

    Divide \(\dfrac{6}{35}\) by \(\dfrac{33}{55}\).

    Solution

    Invert, multiply, factor, and cancel common factors.

    \[ \begin{aligned}  \frac{6}{35} \div \frac{33}{55} =  \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ =  \frac{6 \cdot 55}{35 \cdot 33} ~ & \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \\ =  \frac{(2 \cdot 3) \cdot (5 \cdot 11)}{(5 \cdot 7) \cdot (3 \cdot 11)} ~ & \textcolor{red}{ \text{ Factor numerators and denominators.}} \\ =  \frac{2 \cdot \cancel{3} \cdot \cancel{5} \cdot \cancel{11}}{ \cancel{5} \cdot 7 \cdot \cancel{3} \cdot \cancel{11}} ~ & \textcolor{red}{ \text{ Cancel common factors.}} \\ =  \frac{2}{7} ~ & \textcolor{red}{ \text{ Remaining factors.}} \end{aligned}\nonumber \]

    Try It \(\PageIndex{4}\)

    Divide: \( \dfrac{6}{15} \div \left( \dfrac{42}{35} \right) \)

    Answer

    \(\dfrac{1}{3}\)

    Of course, you can also choose to factor numerators and denominators in place, then cancel common factors.


    This page titled 5.8: Dividing Fractions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by David Arnold.

    • Was this article helpful?