Skip to main content
Statistics LibreTexts

Outcomes and the Type I and Type II Errors (Exercises)

  • Page ID
    4937

    Exercise 9.3.5

    The mean price of mid-sized cars in a region is $32,000. A test is conducted to see if the claim is true. State the Type I and Type II errors in complete sentences.

    Answer

    Type I: The mean price of mid-sized cars is $32,000, but we conclude that it is not $32,000.

    Type II: The mean price of mid-sized cars is not $32,000, but we conclude that it is $32,000.

    Exercise 9.3.6

    A sleeping bag is tested to withstand temperatures of –15 °F. You think the bag cannot stand temperatures that low. State the Type I and Type II errors in complete sentences.

    Exercise 9.3.7

    For Exercise 9.12, what are \(\alpha\) and \(\beta\) in words?

    Answer:

    \(\alpha =\) the probability that you think the bag cannot withstand -15 degrees F, when in fact it can

    \(\beta =\) the probability that you think the bag can withstand -15 degrees F, when in fact it cannot

    Exercise 9.3.8

    In words, describe \(1 - \beta\) For Exercise 9.12.

    Exercise 9.3.9

    A group of doctors is deciding whether or not to perform an operation. Suppose the null hypothesis, \(H_{0}\), is: the surgical procedure will go well. State the Type I and Type II errors in complete sentences.

    Answer:

    Type I: The procedure will go well, but the doctors think it will not.

    Type II: The procedure will not go well, but the doctors think it will.

    Exercise 9.3.10

    A group of doctors is deciding whether or not to perform an operation. Suppose the null hypothesis, \(H_{0}\), is: the surgical procedure will go well. Which is the error with the greater consequence?

    Exercise 9.3.11

    The power of a test is 0.981. What is the probability of a Type II error?

    Answer:

    0.019

    Exercise 9.3.12

    A group of divers is exploring an old sunken ship. Suppose the null hypothesis, \(H_{0}\), is: the sunken ship does not contain buried treasure. State the Type I and Type II errors in complete sentences.

    Exercise 9.3.13

    A microbiologist is testing a water sample for E-coli. Suppose the null hypothesis, \(H_{0}\), is: the sample does not contain E-coli. The probability that the sample does not contain E-coli, but the microbiologist thinks it does is 0.012. The probability that the sample does contain E-coli, but the microbiologist thinks it does not is 0.002. What is the power of this test?

    Answer

    0.998

    Exercise 9.3.14

    A microbiologist is testing a water sample for E-coli. Suppose the null hypothesis, \(H_{0}\), is: the sample contains E-coli. Which is the error with the greater consequence?