# Ch 11.1 Chi-square Distribution

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

# Ch 11.1  Facts about Chi-square distribution

Notation for chi-square distribution is  χ2 . It is a distribution with degree of freedom (df = n -1).

Characteristic of chi-square distribution.

i) Shape of the distribution is right skew,

non-symmetrical. There is a different chi-square curve for each df. When df > 90, the chi-square curve approximates the normal distribution. ii) mean μ = df (n-1), σ = $$2 \sqrt{df}$$. The mean is located just right of the peak. iii) = sum of (n-1) independent, standard normal variable. χ2 is always positive.

Chi-square distribution calculator:

http://onlinestatbook.com/2/calculators/chi_square_prob.html

The calculator can be used to find area to the right of a chi-square value P( χ2 > a)

Ex. Find probability that χ2 is greater than 31 when

df = 10.

Enter chi-square = 31, df = 10, calculate.

Ch 11.1 Chi-square Distribution is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.