Skip to main content
Statistics LibreTexts

10.4: Problems on Functions of Random Variables

  • Page ID
    10879
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Suppose \(X\) is a nonnegative, absolutely continuous random variable. Let \(Z = g(X) = Ce^{-aX}\), where \(a > 0\), \(C > 0\). Then \(0 < Z \le C\). Use properties of the exponential and natural log function to show that

    \(F_Z (v) = 1 - F_X (- \dfrac{\text{In } (v/C)}{a})\) for \(0 < v \le C\)

    Answer

    \(Z = Ce^{-aX} \le v\) iff \(e^{-aX} \le v/C\) iff \(-aX \le \text{In } (v/C)\) iff \(X \ge - \text{In } (v/C)/a\), so that

    \(F_Z(v) = P(Z \le v) = P(X \ge -\text{In } (v/C)/a) = 1 - F_X (-\dfrac{\text{In } (v/C)}{a})\)

    Exercise \(\PageIndex{2}\)

    Use the result of Exercise 10.4.1 to show that if \(X\) ~ exponential \((\lambda)\), then

    \(F_Z (v) = (\dfrac{v}{C})^{\lambda/a}\) \(0 < v \le C\)

    Answer

    \(F_Z (v) = 1 - [1- exp (-\dfrac{\lambda}{a} \cdot \text{In } (v/C))] = (\dfrac{v}{C})^{\lambda/a}\)

    Exercise \(\PageIndex{3}\)

    Present value of future costs. Suppose money may be invested at an annual rate a, compounded continually. Then one dollar in hand now, has a value \(e^{ax}\) at the end of \(x\) years. Hence, one dollar spent \(x\) years in the future has a present valuee\(^{-ax}\). Suppose a device put into operation has time to failure (in years) \(X\) ~ exponential (\(\lambda\)). If the cost of replacement at failure is \(C\) dollars, then the present value of the replacement is \(Z = Ce^{-aX}\). Suppose \(\lambda = 1/10\), \(a = 0.07\), and \(C =\) $1000.

    1. Use the result of Exercise 10.4.2. to determine the probability \(Z \le 700, 500, 200\).
    2. Use a discrete approximation for the exponential density to approximate the probabilities in part (a). Truncate \(X\) at 1000 and use 10,000 approximation points.
    Answer

    \(P(Z \le v) = (\dfrac{v}{1000})^{10/7}\)

    v = [700 500 200];
    P = (v/1000).^(10/7)
    P =  0.6008    0.3715    0.1003
    tappr
    Enter matrix [a b] of x-range endpoints  [0 1000]
    Enter number of x approximation points  10000
    Enter density as a function of t  0.1*exp(-t/10)
    Use row matrices X and PX as in the simple case
    G = 1000*exp(-0.07*t);
    PM1 = (G<=700)*PX'
    PM1 =  0.6005
    PM2 = (G<=500)*PX'
    PM2 =  0.3716
    PM3 = (G<=200)*PX'
    PM3 =  0.1003

    Exercise \(\PageIndex{4}\)

    Optimal stocking of merchandise. A merchant is planning for the Christmas season. He intends to stock m units of a certain item at a cost of c per unit. Experience indicates demand can be represented by a random variable \(D\) ~ Poisson (\(\mu\)). If units remain in stock at the end of the season, they may be returned with recovery of \(r\) per unit. If demand exceeds the number originally ordered, extra units may be ordered at a cost of s each. Units are sold at a price \(p\) per unit. If \(Z = g(D)\) is the gain from the sales, then

    • For \(t \le m\), \(g(t) = (p - c) t- (c - r)(m - t) = (p - r)t + (r - c) m\)
    • For \(t > m\), \(g(t) = (p - c)m + (t - m) (p - s) = (p - s) t + (s - c)m\)

    Let \(M = (-\infty, m]\). Then

    \(g(t) = I_M(t) [(p - r) t + (r - c)m] + I_M(t) [(p - s) t + (s - c) m]\)

    Suppose \(\mu = 50\) \(m = 50\) \(c = 30\) \(p = 50\) \(r = 20\) \(s = 40\).

    Approximate the Poisson random variable \(D\) by truncating at 100. Determine \(P(500 \le Z \le 1100)\).

    Answer
    mu = 50;
    D = 0:100;
    c = 30;
    p = 50;
    r = 20;
    s = 40;
    m = 50;
    PD = ipoisson(mu,D);
    G = (p - s)*D + (s - c)*m +(s - r)*(D - m).*(D <= m);
    M = (500<=G)&(G<=1100);
    PM = M*PD'
    PM =  0.9209
     
    [Z,PZ] = csort(G,PD);         % Alternate: use dbn for Z
    m = (500<=Z)&(Z<=1100);
    pm = m*PZ'
    pm =  0.9209
    

    Exercise \(\PageIndex{5}\)

    (See Example 2 from "Functions of a Random Variable") The cultural committee of a student organization has arranged a special deal for tickets to a concert. The agreement is that the organization will purchase ten tickets at $20 each (regardless of the number of individual buyers). Additional tickets are available according to the following schedule:

    • 11-20, $18 each
    • 21-30, $16 each
    • 31-50, $15 each
    • 51-100, $13 each

    If the number of purchasers is a random variable \(X\), the total cost (in dollars) is a random quantity \(Z = g(X)\) described by

    \(g(X) = 200 + 18 I_{M1} (X) (X - 10) + (16 - 18) I_{M2} (X) (X - 20) +\)

    \((15 - 16) I_{M_3} (X) (X - 30) + (13 - 15) I_{M4} (X) (X - 50)\)

    where \(M1 = [10, \infty)\), \(M2 = [20, \infty)\), \(M3 = [30, \infty)\), \(M4 = [50, \infty)\)

    Suppose \(X\)~ Poisson (75). Approximate the Poisson distribution by truncating at 150. Determine \(P(Z \ge 1000)\), \(P(Z \ge 1300)\) and \(P(900 \le Z \le 1400)\).

    Answer
    X = 0:150;
    PX = ipoisson(75,X);
    G = 200 + 18*(X - 10).*(X>=10) + (16 - 18)*(X - 20).*(X>=20) + ...
         (15 - 16)*(X- 30).*(X>=30) + (13 - 15)*(X - 50).*(X>=50);
    P1 = (G>=1000)*PX'
    P1 =  0.9288
    P2 = (G>=1300)*PX'
    P2 =  0.1142
    P3 = ((900<=G)&(G<=1400))*PX'
    P3 =  0.9742
    [Z,PZ] = csort(G,PX);         % Alternate: use dbn for Z
    p1 = (Z>=1000)*PZ'
    p1 =  0.9288

    Exercise \(\PageIndex{6}\)

    (See Exercise 6 from "Problems on Random Vectors and Joint Distributions", and Exercise 1 from "Problems on Independent Classes of Random Variables")) The pair \(\{X, Y\}\) has the joint distribution

    (in m-file npr08_06.m):

    \(X = \) [-2.3 -0.7 1.1 3.9 5.1] \(Y = \) [1.3 2.5 4.1 5.3]

    \(P = \begin{bmatrix} 0.0483 & 0.0357 & 0.0420 & 0.0399 & 0.0441 \\ 0.0437 & 0.0323 & 0.0380 & 0.0361 & 0.0399 \\ 0.0713 & 0.0527 & 0.0620 & 0.0609 & 0.0551 \\ 0.0667 & 0.0493 & 0.0580 & 0.0651 & 0.0589 \end{bmatrix}\)

    Determine \(P(\text{max }\{X, Y\} \le 4)\). Let \(Z = 3X^3 + 3X^2 Y - Y^3\).

    Determine \(P(Z< 0)\) and \(P(-5 < Z \le 300)\).

    Answer
    npr08_06
    Data are in X, Y, P
    jcalc
    Enter JOINT PROBABILITIES (as on the plane)  P
    Enter row matrix of VALUES of X  X
    Enter row matrix of VALUES of Y  Y
     Use array operations on matrices X, Y, PX, PY, t, u, and P
    P1 = total((max(t,u)<=4).*P)
    P1 =  0.4860
    P2 = total((abs(t-u)>3).*P)
    P2 =  0.4516
    G = 3*t.^3 + 3*t.^2.*u - u.^3;
    P3 = total((G<0).*P)
    P3 =  0.5420
    P4 = total(((-5<G)&(G<=300)).*P)
    P4 =  0.3713
    [Z,PZ] = csort(G,P);          % Alternate: use dbn for Z
    p4 = ((-5<Z)&(Z<=300))*PZ'
    p4 =  0.3713

    Exercise \(\PageIndex{7}\)

    (See Exercise 2 from "Problems on Independent Classes of Random Variables") The pair \(\{X, Y\}\) has the joint distribution (in m-file npr09_02.m):

    \(X = \) [-3.9 -1.7 1.5 2 8 4.1] \(Y = \) [-2 1 2.6 5.1]

    \(P = \begin{bmatrix} 0.0589 & 0.0342 & 0.0304 & 0.0456 & 0.0209 \\ 0.0962 & 0.056 & 0.0498 & 0.0744 & 0.0341 \\ 0.0682 & 0.0398 & 0.0350 & 0.0528 & 0.0242 \\ 0.0868 & 0.0504 & 0.0448 & 0.0672 & 0.0308 \end{bmatrix}\)

    Determine \(P(\{X + Y \ge 5\} \cup \{Y \le 2\})\), \(P(X^2 + Y^2 \le 10)\).

    Answer
    npr09_02
    Data are in X, Y, P
    jcalc
    Enter JOINT PROBABILITIES (as on the plane)  P
    Enter row matrix of VALUES of X  X
    Enter row matrix of VALUES of Y  Y
     Use array operations on matrices X, Y, PX, PY, t, u, and P
    M1 = (t+u>=5)|(u<=2);
    P1 = total(M1.*P)
    P1 =  0.7054
    M2 = t.^2 + u.^2 <= 10;
    P2 = total(M2.*P)
    P2 =  0.3282

    Exercise \(\PageIndex{8}\)

    (See Exercsie 7 from "Problems on Random Vectors and Joint Distributions", and Exercise 3 from "Problems on Independent Classes of Random Variables") The pair has the joint distribution

    (in m-file npr08_07.m):

    \(P(X = t, Y =u)\)
    t = -3.1 -0.5 1.2 2.4 3.7 4.9
    u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203
    4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231
    -2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189
    -3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

    Determine \(P(X^2 - 3X \le 0)\), \(P(X^3 - 3|Y| < 3)\).

    Answer
    npr08_07
    Data are in X, Y, P
    jcalc
    Enter JOINT PROBABILITIES (as on the plane)  P
    Enter row matrix of VALUES of X  X
    Enter row matrix of VALUES of Y  Y
     Use array operations on matrices X, Y, PX, PY, t, u, and P
    M1 = t.^2 - 3*t <=0;
    P1 = total(M1.*P)
    P1 =  0.4500
    M2 = t.^3 - 3*abs(u) < 3;
    P2 = total(M2.*P)
    P2 =  0.7876

    Exercise \(\PageIndex{9}\)

    For the pair \(\{X, Y\}\) in Exercise 10.4.8, let \(Z = g(X, Y) = 3X^2 + 2XY - Y^2\). Determine and plot the distribution function for \(Z\).

    Answer
    G = 3*t.^2 + 2*t.*u - u.^2;  % Determine g(X,Y)
    [Z,PZ] = csort(G,P);         % Obtain dbn for Z = g(X,Y)
    ddbn                         % Call for plotting m-procedure
    Enter row matrix of VALUES  Z
    Enter row matrix of PROBABILITIES  PZ   % Plot not reproduced here

    Exercise \(\PageIndex{10}\)

    For the pair \(\{X, Y\}\) in Exercise 8, let

    \(W = g(X, Y) = \begin{cases} X & \text{for } X + Y \le 4 \\ 2Y & \text{for } X + Y > 4 \end{cases} = I_M (X, Y) X + I_{M^c} (X, Y) 2Y\)

    Determine and plot the distribution function for \(W\).

    Answer
    H = t.*(t+u<=4) + 2*u.*(t+u>4);
    [W,PW] = csort(H,P);
    ddbn
    Enter row matrix of VALUES  W
    Enter row matrix of PROBABILITIES  PW   % Plot not reproduced here

    For the distributions in Exercises 10-15 below

    1. Determine analytically the indicated probabilities.
    2. Use a discrete approximation to calculate the same probablities.'

    Exercise \(\PageIndex{11}\)

    \(f_{XY} (t, u) = \dfrac{3}{88} (2t + 3u^2)\) for \(0 \le t \le 2\), \(0 \le u \le 1+ t\) (see Exercise 15 from "Problems on Random Vectors and Joint Distributions").

    \(Z = I_{[0, 1]} (X) 4X + I_{(1, 2]} (X) (X + Y)\)

    Determine \(P(Z \le 2)\)

    Answer

    \(P(Z \le 2) = P(Z \in Q = Q1M1 \bigvee Q2M2)\), where \(M1 = \{(t, u): 0 \le t \le 1, 0 \le u \le 1 + t\}\)

    \(M2 = \{(t, u) : 1 < t \le 2, 0 \le u \le 1 + t\}\)

    \(Q1 = \{(t, u) : 0 \le t \le 1/2\}\), \(Q2 = \{(t, u) : u \le 2 - t\}\) (see figure)

    \(P = \dfrac{3}{88} \int_{0}^{1/2} \int_{0}^{1 + t} (2t + 3u^2) du\ dt + \dfrac{3}{88} \int_{1}^{2} \int_{0}^{2 - t} (2t + 3u^2) du\ dt = \dfrac{563}{5632}\)

    tuappr
    Enter matrix [a b] of X-range endpoints  [0 2]
    Enter matrix [c d] of Y-range endpoints  [0 3]
    Enter number of X approximation points  200
    Enter number of Y approximation points  300
    Enter expression for joint density  (3/88)*(2*t + 3*u.^2).*(u<=1+t)
    Use array operations on X, Y, PX, PY, t, u, and P
    G = 4*t.*(t<=1) + (t+u).*(t>1);
    [Z,PZ] = csort(G,P);
    PZ2 = (Z<=2)*PZ'
    PZ2 =  0.1010                       % Theoretical = 563/5632 = 0.1000
    figP10_11_12.png
    Figure 10.4.1

    Exercise \(\PageIndex{12}\)

    \(f_{XY} (t, u) = \dfrac{24}{11}\) for \(0 \le t \le 2\), \(0 \le u \le \text{min } \{1, 2 - t\}\)(see Exercise 17 from "Problems on Random Vectors and Joint Distributions").

    \(Z = I_M(X, Y) \dfrac{1}{2} X + I_{M^c} (X, Y) Y^2\), \(M = \{(t, u) : u > t\}\)

    Determine \(P (Z \le 1/4)\).

    Answer

    \(P(Z \le 1/4) = P((X, Y) \in M_1Q_1 \bigvee M_2Q_2)\), \(M_1 = \{(t, u): 0 \le t \le u \le 1\}\)

    \(M_2 = \{(t, u) : 0 \le t \le 2, 0 \le t \le \text{min } (t, 2 - t)\}\)

    \(Q_1 = \{(t, u): t \le 1/2\}\) \(Q_2 = \{(t, u): u \le 1/2\}\) (see figure)

    \(P = \dfrac{24}{11} \int_{0}^{1/2} \int_{0}^{1} tu \ du\ dt + \dfrac{24}{11} \int_{1/2}^{3/2} \int_{0}^{1/2} tu\ du\ dt + \dfrac{24}{11} \int_{3/2}^{2} \int_{0}^{2 - t} tu\ du\ dt = \dfrac{85}{176}\)

    tuappr
    Enter matrix [a b] of X-range endpoints  [0 2]
    Enter matrix [c d] of Y-range endpoints  [0 1]
    Enter number of X approximation points  400
    Enter number of Y approximation points  200
    Enter expression for joint density  (24/11)*t.*u.*(u<=min(1,2-t))
    Use array operations on X, Y, PX, PY, t, u, and P
    G = 0.5*t.*(u>t) + u.^2.*(u<t);
    [Z,PZ] = csort(G,P);
    pp = (Z<=1/4)*PZ'
    pp =  0.4844                        % Theoretical = 85/176 = 0.4830

    Exercise \(\PageIndex{13}\)

    \(f_{XY} (t, u) = \dfrac{3}{23} (t + 2u)\) for \(0 \le t \le 2\), \(0 \le u \le \text{max } \{2 - t, t\}\) (see Exercise 18 from "Problems on Random Vectors and Joint Distributions").

    \(Z = I_M (X, Y) (X + Y) + I_{M^c} (X, Y)2Y\), \(M = \{(t, u): \text{max } (t, u) \le 1\}\)

    Determine \(P(Z \le 1)\)

    Answer

    \(P(Z \le 1) = P((X, Y) \in M_1Q_1 \bigvee M_2Q_2)\), \(M_1 = \{(t, u): 0 \le t \le 1, 0 \le u \le 1 - t\}\)

    \(M_2 = \{(t, u) : 1 \le t \le 2, 0 \le u \le t\}\)

    \(Q_1 = \{(t, u): u \le 1 - t\}\) \(Q_2 = \{(t, u): u \le 1/2\}\) (see figure)

    \(P = \dfrac{3}{23} \int_{0}^{1} \int_{0}^{1-t} (t + 2u) \ du\ dt + \dfrac{3}{23} \int_{1}^{2} \int_{0}^{1/2} (t + 2u)\ du\ dt = \dfrac{9}{46}\)

    tuappr
    Enter matrix [a b] of X-range endpoints  [0 2]
    Enter matrix [c d] of Y-range endpoints  [0 2]
    Enter number of X approximation points  300
    Enter number of Y approximation points  300
    Enter expression for joint density  (3/23)*(t + 2*u).*(u<=max(2-t,t))
    Use array operations on X, Y, PX, PY, t, u, and P
    M = max(t,u) <= 1;
    G = M.*(t + u) + (1 - M)*2.*u;
    p = total((G<=1).*P)
    p =  0.1960                         % Theoretical = 9/46 = 0.1957
    figP10_13_14.png
    Figure 10.4.2

    Exercise \(\PageIndex{14}\)

    \(f_{XY} (t, u) = \dfrac{12}{179} (3t^2 + u)\), for \(0 \le t \le 2\), \(0 \le u \le \text{min } \{2, 3 - t\}\) (see Exercise 19 from "Problems on Random Vectors and Joint Distributions").

    \(Z = I_M (X, Y) (X + Y) + I_{M^c} (X, Y) 2Y^2\), \(M = \{(t, u): t \le 1, u \ge 1\}\)

    Determine \(P(Z \le 2)\).

    Answer

    \(P(Z \le 2) = P((X, Y) \in M_1 Q_1 \bigvee (M_2 \bigvee M_3) Q_2)\), \(M_1 = \{(t, u): 0 \le t \le 1, 1 \le u \le 2\}\)

    \(M_2 = \{(t, u) : 0 \le t \le 1, 0 \le u \le 1\}\) \(M_3 = \{(t, u): 1 \le t \le 2, 0 \le u \le 3 - t\}\)

    \(Q_1 = \{(t, u): u \le 1 - t\}\) \(Q_2 = \{(t, u) : u \le 1/2\}\) (see figure)

    \(P = \dfrac{12}{179} \int_{0}^{1} \int_{0}^{2 - t} (3t^2 + u) du\ dt + \dfrac{12}{179} \int_{1}^{2} \int_{0}^{1} (3t^2 + u) du\ dt = \dfrac{119}{179}\)

    tuappr
    Enter matrix [a b] of X-range endpoints  [0 2]
    Enter matrix [c d] of Y-range endpoints  [0 2]
    Enter number of X approximation points  300
    Enter number of Y approximation points  300
    Enter expression for joint density  (12/179)*(3*t.^2 + u).*(u<=min(2,3-t))
    Use array operations on X, Y, PX, PY, t, u, and P
    M = (t<=1)&(u>=1);
    Z = M.*(t + u) + (1 - M)*2.*u.^2;
    G = M.*(t + u) + (1 - M)*2.*u.^2;
    p = total((G<=2).*P)
    p =  0.6662                          % Theoretical = 119/179 = 0.6648

    Exercise \(\PageIndex{15}\)

    \(f_{XY} (t, u) = \dfrac{12}{227} (3t + 2tu)\), for \(0 \le t \le 2\), \(0 \le u \le \text{min } \{1 + t, 2\}\) (see Exercise 20 from "Problems on Random Variables and joint Distributions")

    \(Z = I_M (X, Y) X + I_{M^c} (X, Y) \dfrac{Y}{X}\), \(M = \{(t, u): u \le \text{min } (1, 2 - t)\}\)

    Determine \(P(Z \le 1)\).

    figP10_15.png

    Figure 10.4.3

    Answer

    \(P(Z \le 1) = P((X, Y) \in M_1 Q_1 \bigvee V_2Q_2)\), \(M_1 = M\), \(M_2 = M^c\)

    \(Q_1 = \{(t, u): 0 \le t \le \}\) \(Q_2 = \{(t, u) : u \le t\}\) (see figure)

    \(P = \dfrac{12}{227} \int_{0}^{1} \int_{0}^{1} (3t + 2tu) du\ dt + \dfrac{12}{227} \int_{1}^{2} \int_{2 - t}^{t} (3t + 2tu) du\ dt = \dfrac{124}{227}\)

    tuappr
    Enter matrix [a b] of X-range endpoints  [0 2]
    Enter matrix [c d] of Y-range endpoints  [0 2]
    Enter number of X approximation points  400
    Enter number of Y approximation points  400
    Enter expression for joint density  (12/227)*(3*t+2*t.*u).*(u<=min(1+t,2))
    Use array operations on X, Y, PX, PY, t, u, and P
    Q = (u<=1).*(t<=1) + (t>1).*(u>=2-t).*(u<=t);
    P = total(Q.*P)
    P =  0.5478                        % Theoretical = 124/227 = 0.5463

    Exercise \(\PageIndex{16}\)

    The class \(\{X, Y, Z\}\) is independent.

    \(X = -2 I_A + I_B + 3I_C\). Minterm probabilities are (in the usual order)

    0.255 0.025 0.375 0.045 0.108 0.012 0.162 0.018

    \(Y = I_D + 3I_E + I_F - 3\). The class \(\{D, E, F\}\) is independent with

    \(P(D) = 0.32\) \(P(E) = 0.56\) \(P(F) = 0.40\)

    \(Z\) has distribution

    Value -1.3 1.2 2.7 3.4 5.8
    Probability 0.12 0.24 0.43 0.13 0.08

    Determine \(P(X^2 + 3XY^2 >3Z)\).

    Answer
    % file npr10_16.m  Data for Exercise 16.
    cx = [-2 1 3 0];
    pmx = 0.001*[255  25 375  45 108  12 162  18];
    cy = [1 3 1 -3];
    pmy = minprob(0.01*[32 56 40]);
    Z = [-1.3 1.2 2.7 3.4 5.8];
    PZ = 0.01*[12 24 43 13  8];
    disp('Data are in cx, pmx, cy, pmy, Z, PZ')
    npr10_16                % Call for data
    Data are in cx, pmx, cy, pmy, Z, PZ
    [X,PX] = canonicf(cx,pmx);
    [Y,PY] = canonicf(cy,pmy);
    icalc3
    Enter row matrix of X-values  X
    Enter row matrix of Y-values  Y
    Enter row matrix of Z-values  Z
    Enter X probabilities  PX
    Enter Y probabilities  PY
    Enter Z probabilities  PZ
    Use array operations on matrices X, Y, Z,
    PX, PY, PZ, t, u, v, and P
    M = t.^2 + 3*t.*u.^2 > 3*v;
    PM = total(M.*P)
    PM =  0.3587

    Exercise \(\PageIndex{17}\)

    The simple random variable X has distribution

    \(X =\) [-3.1 -0.5 1.2 2.4 3.7 4.9] \(PX =\) [0.15 0.22 0.33 0.12 0.11 0.07]
    1. Plot the distribution function \(F_X\) and the quantile function \(Q_X\).
    2. Take a random sample of size \(n =\) 10,000. Compare the relative frequency for each value with the probability that value is taken on.
    Answer
    X = [-3.1 -0.5 1.2 2.4 3.7 4.9];
    PX = 0.01*[15 22 33 12 11  7];
    ddbn
    Enter row matrix of VALUES  X
    Enter row matrix of PROBABILITIES  PX  % Plot not reproduced here
    dquanplot
    Enter VALUES for X  X
    Enter PROBABILITIES for X  PX          % Plot not reproduced here
    rand('seed',0)                      % Reset random number generator
    dsample                             % for comparison purposes
    Enter row matrix of VALUES  X
    Enter row matrix of PROBABILITIES  PX
    Sample size n  10000
        Value      Prob    Rel freq
       -3.1000    0.1500    0.1490
       -0.5000    0.2200    0.2164
        1.2000    0.3300    0.3340
        2.4000    0.1200    0.1184
        3.7000    0.1100    0.1070
        4.9000    0.0700    0.0752
    Sample average ex = 0.8792
    Population mean E[X] = 0.859
    Sample variance vx = 5.146
    Population variance Var[X] = 5.112
    

    This page titled 10.4: Problems on Functions of Random Variables is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.