15.6: Appendix F- The q-Tables
- Page ID
- 50196
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The tables show the Studentized Range \(q\)-values needed when hand-calculating HSD post-hoc comparisons.
Number of Groups (\(k\)) |
|||||||||
Degrees of Freedom Within (\(df_w\)) |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
1 |
17.969 |
26.976 |
32.819 |
37.082 |
40.408 |
43.119 |
45.397 |
47.357 |
|
2 |
6.085 |
8.331 |
9.798 |
10.881 |
11.734 |
12.435 |
13.027 |
13.538 |
|
3 |
4.501 |
5.910 |
6.825 |
7.502 |
8.037 |
8.478 |
8.852 |
9.177 |
|
4 |
3.927 |
5.040 |
5.757 |
6.287 |
6.707 |
7.053 |
7.347 |
7.602 |
|
5 |
3.635 |
4.602 |
5.219 |
5.673 |
6.033 |
6.330 |
6.582 |
6.801 |
|
6 |
3.461 |
4.339 |
4.896 |
5.305 |
5.629 |
5.895 |
6.122 |
6.319 |
|
7 |
3.344 |
4.165 |
4.681 |
5.060 |
5.359 |
5.606 |
5.815 |
5.998 |
|
8 |
3.261 |
4.041 |
4.529 |
4.886 |
5.167 |
5.399 |
5.596 |
5.767 |
|
9 |
3.199 |
3.949 |
4.415 |
4.755 |
5.024 |
5.244 |
5.432 |
5.595 |
|
10 |
3.151 |
3.877 |
4.327 |
4.654 |
4.912 |
5.124 |
5.304 |
5.461 |
|
11 |
3.113 |
3.820 |
4.256 |
4.574 |
4.823 |
5.028 |
5.202 |
5.353 |
|
12 |
3.081 |
3.773 |
4.199 |
4.508 |
4.748 |
4.947 |
5.116 |
5.263 |
|
13 |
3.055 |
3.734 |
4.151 |
4.453 |
4.690 |
4.884 |
5.049 |
5.192 |
|
14 |
3.033 |
3.701 |
4.111 |
4.407 |
4.639 |
4.829 |
4.990 |
5.130 |
|
15 |
3.014 |
3.673 |
4.076 |
4.367 |
4.595 |
4.782 |
4.940 |
5.077 |
|
16 |
2.998 |
3.649 |
4.046 |
4.333 |
4.557 |
4.741 |
4.896 |
5.031 |
|
17 |
2.984 |
3.628 |
4.020 |
4.303 |
4.524 |
4.705 |
4.858 |
4.991 |
|
18 |
2.971 |
3.609 |
3.997 |
4.276 |
4.494 |
4.673 |
4.824 |
4.955 |
|
19 |
2.960 |
3.593 |
3.977 |
4.253 |
4.469 |
4.645 |
4.794 |
4.924 |
|
20 |
2.950 |
3.578 |
3.958 |
4.232 |
4.445 |
4.620 |
4.768 |
4.895 |
|
21 |
2.941 |
3.565 |
3.942 |
4.213 |
4.424 |
4.597 |
4.744 |
4.870 |
|
22 |
2.933 |
3.553 |
3.927 |
4.196 |
4.406 |
4.577 |
4.722 |
4.847 |
|
23 |
2.926 |
3.542 |
3.914 |
4.181 |
4.388 |
4.558 |
4.702 |
4.826 |
|
24 |
2.919 |
3.532 |
3.901 |
4.166 |
4.373 |
4.541 |
4.684 |
4.807 |
|
25 |
2.913 |
3.523 |
3.890 |
4.153 |
4.358 |
4.526 |
4.667 |
4.789 |
|
26 |
2.907 |
3.514 |
3.880 |
4.142 |
4.345 |
4.512 |
4.652 |
4.773 |
|
27 |
2.902 |
3.506 |
3.870 |
4.131 |
4.333 |
4.498 |
4.638 |
4.758 |
|
28 |
2.897 |
3.499 |
3.861 |
4.120 |
4.322 |
4.486 |
4.625 |
4.745 |
|
29 |
2.892 |
3.493 |
3.853 |
4.111 |
4.311 |
4.475 |
4.613 |
4.732 |
|
30 |
2.888 |
3.487 |
3.845 |
4.102 |
4.302 |
4.464 |
4.601 |
4.720 |
|
31 |
2.884 |
3.481 |
3.838 |
4.094 |
4.292 |
4.454 |
4.591 |
4.709 |
|
32 |
2.881 |
3.475 |
3.832 |
4.086 |
4.284 |
4.445 |
4.581 |
4.698 |
|
33 |
2.877 |
3.470 |
3.825 |
4.079 |
4.276 |
4.437 |
4.572 |
4.689 |
|
34 |
2.874 |
3.465 |
3.820 |
4.072 |
4.268 |
4.428 |
4.563 |
4.680 |
|
35 |
2.871 |
3.461 |
3.814 |
4.066 |
4.261 |
4.421 |
4.555 |
4.671 |
|
36 |
2.868 |
3.457 |
3.809 |
4.060 |
4.255 |
4.414 |
4.547 |
4.663 |
|
37 |
2.866 |
3.453 |
3.804 |
4.054 |
4.249 |
4.407 |
4.540 |
4.655 |
|
38 |
2.863 |
3.449 |
3.799 |
4.049 |
4.243 |
4.400 |
4.533 |
4.648 |
|
39 |
2.861 |
3.446 |
3.795 |
4.044 |
4.237 |
4.394 |
4.527 |
4.641 |
|
40 |
2.858 |
3.442 |
3.791 |
4.039 |
4.232 |
4.389 |
4.521 |
4.635 |
|
41 |
2.856 |
3.439 |
3.787 |
4.035 |
4.227 |
4.383 |
4.515 |
4.628 |
|
42 |
2.854 |
3.436 |
3.783 |
4.030 |
4.222 |
4.378 |
4.509 |
4.622 |
|
43 |
2.852 |
3.433 |
3.779 |
4.026 |
4.217 |
4.373 |
4.504 |
4.617 |
|
44 |
2.850 |
3.430 |
3.776 |
4.022 |
4.213 |
4.368 |
4.499 |
4.611 |
|
45 |
2.848 |
3.428 |
3.773 |
4.018 |
4.209 |
4.364 |
4.494 |
4.606 |
|
46 |
2.847 |
3.425 |
3.770 |
4.015 |
4.205 |
4.359 |
4.489 |
4.601 |
|
47 |
2.845 |
3.423 |
3.767 |
4.011 |
4.201 |
4.355 |
4.485 |
4.597 |
|
48 |
2.844 |
3.420 |
3.764 |
4.008 |
4.197 |
4.351 |
4.481 |
4.592 |
|
49 |
2.842 |
3.418 |
3.761 |
4.005 |
4.194 |
4.347 |
4.477 |
4.588 |
|
50 |
2.841 |
3.416 |
3.758 |
4.002 |
4.190 |
4.344 |
4.473 |
4.584 |
|
51 |
2.839 |
3.414 |
3.756 |
3.999 |
4.187 |
4.340 |
4.469 |
4.580 |