Skip to main content
Statistics LibreTexts

12.8: Structured Summary for Bivariate Correlation

  • Page ID
    50167

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    After carefully reading the chapter, complete the following structured summary to add a learning check and easy-to-use reference to your notes.

    Summarize what each symbol stands for.

    \(n\) =

    \(d f\) =

    \(\bar {X}\) =

    \(\Sigma(X-\bar{X})^2\) =

    \(\bar {Y}\) =

    \(\Sigma(Y-\bar{Y})^2\) =

    \(\Sigma(X-\bar{X})(Y-\bar{Y})\) =

    Fill-in the appropriate information for each section below:

    1. Bivariate Correlation Basics
      1. For which kinds of data can/should this be used?
      2. What is the focus of this statistic?
      3. What assumptions must the data meet to use this test?
    2. Bivariate Correlation Formula
      1. What is the formula for a Bivariate Correlation?
      2. What things should be computed in the preparatory steps for using this formula?
      3. What are the steps for solving using this formula?
    3. Reporting Results from a Bivariate Correlation
      1. How is this statistic reported when using APA format?
        1. What things must be reported in the APA summary sentence for bivariate correlation?
        2. What specific additional statistic is often reported and interpreted as a percent when the correlation is significant?
    Bivariate Correlation Calculations Chart

    Steps 1 Through 3

    Deviation Steps

     

    1a

    1b

     

    2a

    2b

    3a

     

    Sleep

    Hours

    (\(X\))

    Deviation

    (\(X-\bar{X}\))

    Dev.

    Squared

    \((X-\bar{X})^2\)

    Quiz

    Scores (\(Y\))

    Deviati

    on

    (\(Y-\bar{Y}\))

    Dev.

    Squared

    \((Y-\bar{Y})^2\)

    \((X-\bar{X})(Y-\bar{Y})\)
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

    Summation Steps

    \(\bar {X}\) =

     

    Step 1c

    \(\Sigma(X-\bar{X})^2\) =

    \(\bar {Y}\) =

     

    Step 2c

    \(\Sigma(Y-\bar{Y})^2\) =

    Step 3b

    \(\Sigma(X-\bar{X})(Y-\bar{Y})\) =

    Step 4

    Find the

    denominator

    \(\sqrt{\Sigma(X-\bar{X})^2} \sqrt{\Sigma(Y-\bar{Y})^2}= \)

    Step 5

    Put the pieces together to find \(r\) and round to the hundredths place

    \(\begin{gathered}
    r=\dfrac{\Sigma(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^2} \sqrt{\Sigma(Y-\bar{Y})^2}} \\
    r=
    \end{gathered} \)

    Additional Analyses

    Compute \(df\) for all correlations

    Computer \(r^2\) only for significant correlations

    \(df = n – 2\)

    \(r^2\) = the coefficient of determination


    This page titled 12.8: Structured Summary for Bivariate Correlation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by .

    • Was this article helpful?