Skip to main content
Statistics LibreTexts

14.2: Appendix F | Mathematical Phrases, Symbols, and Formulas

  • Page ID
    41004
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    English Phrases Written Mathematically

    When the English says: Interpret this as:
    X is at least 4. X ≥ 4
    The minimum of X is 4. X ≥ 4
    X is no less than 4. X ≥ 4
    X is greater than or equal to 4. X ≥ 4
    X is at most 4. X ≤ 4
    The maximum of X is 4. X ≤ 4
    X is no more than 4. X ≤ 4
    X is less than or equal to 4. X ≤ 4
    X does not exceed 4. X ≤ 4
    X is greater than 4. X > 4
    X is more than 4. X > 4
    X exceeds 4. X > 4
    X is less than 4. X < 4
    There are fewer X than 4. X < 4
    X is 4. X = 4
    X is equal to 4. X = 4
    X is the same as 4. X = 4
    X is not 4. X ≠ 4
    X is not equal to 4. X ≠ 4
    X is not the same as 4. X ≠ 4
    X is different than 4. X ≠ 4
    Table F1

    Symbols and Their Meanings

    Chapter (1st used) Symbol Spoken Meaning
    Sampling and Data         −−−−√         The square root of same
    Sampling and Data ππ Pi 3.14159… (a specific number)
    Descriptive Statistics Q1 Quartile one the first quartile
    Descriptive Statistics Q2 Quartile two the second quartile
    Descriptive Statistics Q3 Quartile three the third quartile
    Descriptive Statistics IQR interquartile range Q3 – Q1 = IQR
    Descriptive Statistics x–x– x-bar sample mean
    Descriptive Statistics μμ mu population mean
    Descriptive Statistics s s sample standard deviation
    Descriptive Statistics s2s2 s squared sample variance
    Descriptive Statistics σσ sigma population standard deviation
    Descriptive Statistics σ2σ2 sigma squared population variance
    Descriptive Statistics ΣΣ capital sigma sum
    Probability Topics {}{} brackets set notation
    Probability Topics SS S sample space
    Probability Topics AA Event A event A
    Probability Topics P(A)P(A) probability of A probability of A occurring
    Probability Topics P(A|B)P(A|B) probability of A given B prob. of A occurring given B has occurred
    Probability Topics P(A∪B)P(A∪B) prob. of A or B prob. of A or B or both occurring
    Probability Topics P(A∩B)P(A∩B) prob. of A and B prob. of both A and B occurring (same time)
    Probability Topics A A-prime, complement of A complement of A, not A
    Probability Topics P(A') prob. of complement of A same
    Probability Topics G1 green on first pick same
    Probability Topics P(G1) prob. of green on first pick same
    Discrete Random Variables PDF prob. density function same
    Discrete Random Variables X X the random variable X
    Discrete Random Variables X ~ the distribution of X same
    Discrete Random Variables ≥≥ greater than or equal to same
    Discrete Random Variables ≤≤ less than or equal to same
    Discrete Random Variables = equal to same
    Discrete Random Variables not equal to same
    Continuous Random Variables f(x) f of x function of x
    Continuous Random Variables pdf prob. density function same
    Continuous Random Variables U uniform distribution same
    Continuous Random Variables Exp exponential distribution same
    Continuous Random Variables f(x) = f of x equals same
    Continuous Random Variables m m decay rate (for exp. dist.)
    The Normal Distribution N normal distribution same
    The Normal Distribution z z-score same
    The Normal Distribution Z standard normal dist. same
    The Central Limit Theorem X–X– X-bar the random variable X-bar
    The Central Limit Theorem μx–μx– mean of X-bars the average of X-bars
    The Central Limit Theorem σx–σx– standard deviation of X-bars same
    Confidence Intervals CL confidence level same
    Confidence Intervals CI confidence interval same
    Confidence Intervals EBM error bound for a mean same
    Confidence Intervals EBP error bound for a proportion same
    Confidence Intervals t Student's t-distribution same
    Confidence Intervals df degrees of freedom same
    Confidence Intervals tα2tα2 student t with α/2 area in right tail same
    Confidence Intervals p'p′ p-prime sample proportion of success
    Confidence Intervals q'q′ q-prime sample proportion of failure
    Hypothesis Testing H0H0 H-naught, H-sub 0 null hypothesis
    Hypothesis Testing HaHa H-aH-sub a alternate hypothesis
    Hypothesis Testing H1H1 H-1, H-sub 1 alternate hypothesis
    Hypothesis Testing αα alpha probability of Type I error
    Hypothesis Testing ββ beta probability of Type II error
    Hypothesis Testing X1––X2¯¯¯¯¯X1––X2¯ X1-bar minus X2-bar difference in sample means
    Hypothesis Testing μ1−μ2μ1−μ2 mu-1 minus mu-2 difference in population means
    Hypothesis Testing P′1−P′2P′1−P′2 P1-prime minus P2-prime difference in sample proportions
    Hypothesis Testing p1−p2p1−p2 p1 minus p2 difference in population proportions
    Chi-Square Distribution X2Χ2 Ky-square Chi-square
    Chi-Square Distribution OO Observed Observed frequency
    Chi-Square Distribution EE Expected Expected frequency
    Linear Regression and Correlation y = a + bx y equals a plus b-x equation of a straight line
    Linear Regression and Correlation yˆy^ y-hat estimated value of y
    Linear Regression and Correlation rr "r""r" same
    Linear Regression and Correlation ρρ rho ("row")rho ("row") population correlation coefficient
    Linear Regression and Correlation εε error term for a regression line same
    Linear Regression and Correlation SSE Sum of Squared Errors same
    F-Distribution and ANOVA F F-ratio F-ratio

    Table B2 Symbols and their Meanings

    Formulas

     

      Symbols you must know  

    Population

     

    Sample

    Size

    Mean

    Variance

    Standard deviation

    Proportion

    Single data set formulae

    Population

     

    Sample

    Arithmetic mean

     

    Geometric mean

    Inter-quartile range

    Variance

    Single data set formulae

    Population

     

    Sample

    Arithmetic mean

     

    Geometric mean

    Variance

    Coefficient of variation

     

    Basic probability rules

    Multiplication rule

    Addition rule

     or

    Independence test

     

    Hypergeometric distribution formulae

    Combinatorial equation

    Probability equation

    Mean

    Variance

    Binomial distribution formulae

    Probability density function

    Arithmetic mean

    Variance

    Geometric distribution formulae

    Probability when  is the number of failures before first success

    Mean

    Variance

    Poisson distribution formulae

    Probability equation

     

    Mean

     

    Variance

    Uniform distribution formulae

     for

     

    PDF

     

    Mean

    Variance

    Exponential distribution formulae

    Cumulative probability

     or

    Mean and decay factor

    Variance

     

    The following page of formulae requires the use of the " \(Z\) ", " \(t\) ", " \(\chi^2\) " or " \(F\) " tables.

     

    Z-transformation for normal distribution

    Normal approximation to the binomial

    Probability (ignores subscripts)

    Hypothesis testing

    Confidence intervals

    [bracketed symbols equal margin of error] (subscripts denote locations on respective distribution tables)

    Interval for the population mean when sigma is known

    Interval for the population mean when sigma is unknown but  

    Interval for the population mean when sigma is unknown but  

    Interval for the population proportion

    Interval for difference between two means with matched pairs  where  is the deviation of the differences

    Interval for difference between two means when sigmas are known

    Interval for difference between two means with equal variances when sigmas are unknown  

    Interval for difference between two population proportions

    Tests for GOF, Independence, and Homogeneity

       

    Where  is the sample variance which is the larger of the two sample variances

    The next 3 formulae are for determining sample size with confidence intervals.
    (note: E represents the margin of error)

    \(n=\frac{Z_{\left(\frac{a}{2}\right)}^2 \sigma^2}{E^2}\)

    Use when sigma is known \(E=\bar{x}-\mu\)

    \[n=\frac{Z_{\left(\frac{a}{2}\right)}^2(0.25)}{E^2}\] Use when \(p^{\prime}\) is unknown \(E=p^{\prime}-p\)
    \(n=\frac{Z_{\left(\frac{a}{2}\right)}^2(0.25)}{E^2}\) Use when \(p^{\prime}\) is unknown

    \(n=\frac{Z_{\left(\frac{a}{2}\right)}^2\left[p^{\prime}\left(q^{\prime}\right)\right]}{E^2}\)

    Use when \(p^{\prime}\) is unknown\(E=p^{\prime}-p\)

    Simple linear regression formulae for

    Correlation coefficient

    Coefficient b (slope)

    y-intercept

    Estimate of the error variance

    Standard error for coefficient

    Hypothesis test for coefficient

    Interval for coefficient

    Interval for expected value of

    Prediction interval for an individual

     

    ANOVA formulae

    Sum of squares regression

    Sum of squares error

    Sum of squares total

    Coefficient of determination

     

    The following is the breakdown of a one-way ANOVA table for linear regression.

    Source of variation

    Sum of squares

    Degrees of freedom

    Mean squares

    -ratio

    Regression

    SSR

    1 or

    Error

    SSE

     

    Total

     

     


    14.2: Appendix F | Mathematical Phrases, Symbols, and Formulas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?