7.2: The Central Limit Theorem for Sample Means
The Central Limit Theorem for Sample Means:
\[\begin{array}{l}
\bar{X} \sim N\left(\mu_{\bar{x}}, \dfrac{\sigma}{\sqrt{n}}\right) \\
Z=\dfrac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\dfrac{\bar{X}-\mu}{\sigma / \sqrt{n}}
\end{array}\]
The Mean \(\bar{X}: \mu_{\bar{x}}\)
Central Limit Theorem for Sample Means z-score \(z=\dfrac{\bar{x}-\mu_{\bar{x}}}{\left(\dfrac{\sigma}{\sqrt{n}}\right)}\)
Standard Error of the Mean (Standard Deviation \((\bar{X})\) ): \(\dfrac{\sigma}{\sqrt{n}}\)
Finite Population Correction Factor for the sampling distribution of means: \(Z=\dfrac{\bar{x}-\mu}{\dfrac{\sigma}{\sqrt{n}} \cdot \sqrt{\dfrac{N-n}{N-1}}}\)
Finite Population Correction Factor for the sampling distribution of proportions: \(\sigma_{\mathrm{p}},=\sqrt{\dfrac{p(1-p)}{n}} \times \sqrt{\dfrac{N-n}{N-1}}\)