Skip to main content
Statistics LibreTexts

5.11: Solutions

  • Page ID
    40904
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1.

    Uniform Distribution

    3.

    Normal Distribution

    5.

    P(6 < x < 7)

    7.

    one

    9.

    zero

    11.

    one

    13.

    0.625

    15.

    The probability is equal to the area from x = 3232" role="presentation" style="position: relative;"> to x = 4 above the x-axis and up to f(x) = 1313" role="presentation" style="position: relative;">.

    17.

    It means that the value of x is just as likely to be any number between 1.5 and 4.5.

    19.

    1.5 ≤ x ≤ 4.5

    21.

    0.3333

    23.

    zero

    25.

    0.6

    27.

    b is 12, and it represents the highest value of x.

    29.

    six

    31.
    This graph shows a uniform distribution. The horizontal axis ranges from 0 to 12. The distribution is modeled by a rectangle extending from x = 0 to x = 12. A region from x = 9 to x = 12 is shaded inside the rectangle.
    Figure 5.52
    33.

    4.8

    35.

    X = The age (in years) of cars in the staff parking lot

    37.

    0.5 to 9.5

    39.

    f(x) = 1919" role="presentation" style="position: relative;"> where x is between 0.5 and 9.5, inclusive.

    41.

    μ = 5

    43.
    1. Answers may vary.
    2. 3.573.57" role="presentation" style="position: relative;">
    45.
    1. Answers may vary.
    2. k = 7.25
    3. 7.25
    47.

    No, outcomes are not equally likely. In this distribution, more people require a little bit of time, and fewer people require a lot of time, so it is more likely that someone will require less time.

    49.

    five

    51.

    f(x) = 0.2e-0.2x

    53.

    0.5350

    55.

    6.02

    57.

    f(x) = 0.75e-0.75x

    59.
    This graph shows an exponential distribution. The graph slopes downward. It begins at the point (0, 0.75) on the y-axis and approaches the x-axis at the right edge of the graph. The decay parameter, m, equals 0.75.
    Figure 5.53
    61.

    0.4756

    63.

    The mean is larger. The mean is 1m=10.75&#x2248;1.331m=10.751.33" role="presentation" style="position: relative;">, which is greater than 0.9242.

    65.

    continuous

    67.

    m = 0.000121

    69.
    1. Answers may vary.
    2. P(x < 5,730) = 0.5001
    71.
    1. Answers may vary.
    2. k = 2947.73
    73.

    Age is a measurement, regardless of the accuracy used.

    75.
    1. X ~ U(1, 9)
    2. Answers may vary.
    3. f(x)=18f(x)=18" role="presentation" style="position: relative;"> where 1&#x2264;x&#x2264;91x9" role="presentation" style="position: relative;">
    4. five
    5. 2.3
    6. 15321532" role="presentation" style="position: relative;">
    7. 333800333800" role="presentation" style="position: relative;">
    8. 2323" role="presentation" style="position: relative;">
    9. 8.2
    77.
    1. X represents the length of time a commuter must wait for a train to arrive on the Red Line.
    2. X ~ U(0, 8)
    3. Graph the probability distribution.
    4. f(x)=18 f ( x ) = 1 8 " role="presentation" style="position: relative;"> where 0&#x2264;x&#x2264;80 x 8" role="presentation" style="position: relative;">
    5. four
    6. 2.31
    7. 18 1 8 " role="presentation" style="position: relative;">
    8. 18 1 8 " role="presentation" style="position: relative;">
    9. 3.2
    79.

    d

    81.

    b

    83.
    1. The probability density function of X is 125&#x2212;16=1912516=19" role="presentation" style="position: relative;">.
      P(X > 19) = (25 – 19) (19)(19)" role="presentation" style="position: relative;"> = 6969" role="presentation" style="position: relative;"> = 2323" role="presentation" style="position: relative;">.
      19) = 2/3."> This shows the graph of the function f(x) = 1/9, the pdf for a uniform distribution. A horizontal line ranges from the point (16, 1/9) to the point (25, 1.9). Vertical lines extend from the x-axis to the graph at x = 16 and x = 25 creating a rectangle. A region is shaded inside the rectangle from x = 19 to x = 25. Text notes that the shaded area represents P(x 19) = 2/3." width="968" height="456" data-lazy-src="/apps/archive/20240130.204924/resources/8e6879719f6f0b2c01f4a67c4c3e282fbdcfbc27">
      Figure 5.54
    2. P(19 < X < 22) = (22 – 19) (19)(19)" role="presentation" style="position: relative;"> = 3939" role="presentation" style="position: relative;"> = 1313" role="presentation" style="position: relative;">.
      This shows the graph of the function f(x) = 1/9, the pdf for a uniform distribution. A horizontal line ranges from the point (16, 1/9) to the point (25, 1.9). Vertical lines extend from the x-axis to the graph at x = 16 and x = 25 creating a rectangle. A region is shaded inside the rectangle from x = 19 to x = 22. Text notes that the shaded area represents P(19< x < 22) = 1/3.
      Figure 5.55
    3. The area must be 0.25, and 0.25 = (width)(19)(19)" role="presentation" style="position: relative;">, so width = (0.25)(9) = 2.25. Thus, the value is 25 – 2.25 = 22.75.
    4. This is a conditional probability question. P(x > 21| x > 18). You can do this two ways:
      • Draw the graph where a is now 18 and b is still 25. The height is 1(25&#x2212;18)1(2518)" role="presentation" style="position: relative;"> = 1717" role="presentation" style="position: relative;">
        So, P(x > 21|x > 18) = (25 – 21)(17)(17)" role="presentation" style="position: relative;"> = 4/7.
      • Use the formula: P(x > 21|x > 18) = P(x&gt;21&#xA0;AND&#xA0;x&gt;18)P(x&gt;18)P(x&gt;21&nbsp;AND&nbsp;x&gt;18)P(x&gt;18)" role="presentation" style="position: relative;">
        = P(x&gt;21)P(x&gt;18)P(x&gt;21)P(x&gt;18)" role="presentation" style="position: relative;"> = (25&#x2212;21)(25&#x2212;18)(2521)(2518)" role="presentation" style="position: relative;"> = 4747" role="presentation" style="position: relative;">.
    85.
    1. P(X > 650) = 700&#x2212;650700&#x2212;300=50400=18700650700300=50400=18" role="presentation" style="position: relative;"> = 0.125
    2. P(400 < X < 650) = 650&#x2212;400700&#x2212;300=250400650400700300=250400" role="presentation" style="position: relative;"> = 0.625
    3. 0.10 = width700&#x2212;300width700300" role="presentation" style="position: relative;">, so width = 400(0.10) = 40. Since 700 – 40 = 660, the drivers travel at least 660 miles on the furthest 10% of days.
    87.
    1. X = the useful life of a particular car battery, measured in months.
    2. X is continuous.
    3. X ~ Exp(0.025)
    4. 40 months
    5. 360 months
    6. 0.4066
    7. 14.27
    89.
    1. X = the time (in years) after reaching age 60 that it takes an individual to retire
    2. X is continuous.
    3. X ~ Exp(15)(15)" role="presentation" style="position: relative;">
    4. five
    5. five
    6. Answers may vary.
    7. 0.1353
    8. before
    9. 18.3
    91.

    a

    93.

    c

    95.

    Let T = the life time of a light bulb.

    The decay parameter is m = 1/8, and T ∼ Exp(1/8). The cumulative distribution function is P(T&lt;t)=1&#x2212;e&#x2212;t8P(T&lt;t)=1et8" role="presentation" style="position: relative;">

    1. Therefore, P(T < 1) = 1 – e&#x2013;1818" role="presentation" style="position: relative;"> ≈ 0.1175.
    2. We want to find P(6 < t < 10).
      To do this, P(6 < t < 10) – P(t < 6)
      =(1&#x2013;e&#x2013;18*10)&#x2013;(1&#x2013;e&#x2013;18*6)=(1e18*10)(1e18*6)" role="presentation" style="position: relative;"> ≈ 0.7135 – 0.5276 = 0.1859
      This graph shows an exponential distribution. The graph slopes downward. It begins at the point (0, 1.2) and approaches the horizontal t-axis at the right edge of the graph. The region under the graph from x = 6 to x = 10 is shaded. Text notes that the shaded area represents P(6 < t < 10) = 0.1859.
      Figure 5.56
    3. We want to find 0.70 =P(T&gt;t)=1&#x2013;(1&#x2013;e&#x2212;t8)=e&#x2212;t8.=P(T&gt;t)=1(1et8)=et8." role="presentation" style="position: relative;">
      Solving for t, e&#x2013;t8t8" role="presentation" style="position: relative;"> = 0.70, so &#x2013;t8t8" role="presentation" style="position: relative;"> = ln(0.70), and t = –8ln(0.70) ≈ 2.85 years.
      Or use t = ln(area_to_the_right)(&#x2013;m)=ln(0.70)&#x2013;18&#x2248;2.85&#xA0;yearsln(area_to_the_right)(m)=ln(0.70)182.85&nbsp;years" role="presentation" style="position: relative;">.
      2.85) = 0.70."> This graph shows an exponential distribution. The graph slopes downward. It begins at the point (0, 1.2) and approaches the horizontal t-axis at the right edge of the graph. The region under the graph from x = 2.85 to the edge of the graph is shaded. Text notes that the shaded area represents P(t 2.85) = 0.70." width="981" height="564" src="/apps/archive/20240130.204924/resources/443d2d74b21ce16f1b3033b0eaee2d8aa8fe7a3d">
      Figure 5.57
    4. We want to find 0.02 = P(T < t) = 1 – e&#x2013;t8t8" role="presentation" style="position: relative;">.
      Solving for t, e&#x2013;t8t8" role="presentation" style="position: relative;"> = 0.98, so &#x2013;t8t8" role="presentation" style="position: relative;"> = ln(0.98), and t = –8ln(0.98) ≈ 0.1616 years, or roughly two months.
      The warranty should cover light bulbs that last less than 2 months.
      Or use ln(area_to_the_right)(&#x2013;m)=ln(1&#x2013;0.2)&#x2013;18ln(area_to_the_right)(m)=ln(10.2)18" role="presentation" style="position: relative;"> = 0.1616.
    5. We must find P(T < 8|T > 7).
      Notice that by the rule of complement events, P(T < 8|T > 7) = 1 – P(T > 8|T > 7).
      By the memoryless property (P(X > r + t|X > r) = P(X > t)).
      So P(T > 8|T > 7) = P(T > 1) = 1&#x2013;(1&#x2013;e&#x2013;18)=e&#x2013;18&#x2248;0.88251(1e18)=e180.8825" role="presentation" style="position: relative;">
      Therefore, P(T < 8|T > 7) = 1 – 0.8825 = 0.1175.
    97.

    Let X = the number of no-hitters throughout a season. Since the duration of time between no-hitters is exponential, the number of no-hitters per season is Poisson with mean λ = 3.
    Therefore, (X = 0) = 30e&#x2013;30!30e30!" role="presentation" style="position: relative;"> = e–3 ≈ 0.0498

    NOTE

    You could let T = duration of time between no-hitters. Since the time is exponential and there are 3 no-hitters per season, then the time between no-hitters is 1313" role="presentation" style="position: relative;"> season. For the exponential, µ = 1313" role="presentation" style="position: relative;">.
    Therefore, m = 1&#x3BC;1μ" role="presentation" style="position: relative;"> = 3 and TExp(3).

    1. The desired probability is P(T > 1) = 1 – P(T < 1) = 1 – (1 – e–3) = e–3 ≈ 0.0498.
    2. Let T = duration of time between no-hitters. We find P(T > 2|T > 1), and by the memoryless property this is simply P(T > 1), which we found to be 0.0498 in part a.
    3. Let X = the number of no-hitters is a season. Assume that X is Poisson with mean λ = 3. Then P(X > 3) = 1 – P(X ≤ 3) = 0.3528.
    99.
    1. 10091009" role="presentation" style="position: relative;"> = 11.11
    2. P(X > 10) = 1 – P(X ≤ 10) = 1 – Poissoncdf(11.11, 10) ≈ 0.5532.
    3. The number of people with Type B positive blood encountered roughly follows the Poisson distribution, so the number of people X who arrive between successive Type B positive arrivals is roughly exponential with mean μ = 9 and m = 1919" role="presentation" style="position: relative;">. The cumulative distribution function of X is P(X&lt;x)=1&#x2212;e&#x2212;x9P(X&lt;x)=1ex9" role="presentation" style="position: relative;">. Thus, P(X > 20) = 1 - P(X ≤ 20) = 1&#x2212;(1&#x2212;e&#x2212;209)&#x2248;0.1084.1(1e209)0.1084." role="presentation" style="position: relative;">

    NOTE

    We could also deduce that each person arriving has a 8/9 chance of not having Type B positive blood. So the probability that none of the first 20 people arrive have Type B positive blood is (89)20&#x2248;0.0948(89)200.0948" role="presentation" style="position: relative;">. (The geometric distribution is more appropriate than the exponential because the number of people between Type B positive people is discrete instead of continuous.)

    101.

    Let T = duration (in minutes) between successive visits. Since patients arrive at a rate of one patient every seven minutes, μ = 7 and the decay constant is m = 1717" role="presentation" style="position: relative;">. The cdf is P(T < t) = 1&#x2212;et71et7" role="presentation" style="position: relative;">

    1. P(T < 2) = 1 - 1&#x2212;e&#x2212;271e27" role="presentation" style="position: relative;"> ≈ 0.2485.
    2. P(T > 15) = 1&#x2212;P(T&lt;15)=1&#x2212;(1&#x2212;e&#x2212;157)&#x2248;e&#x2212;157&#x2248;0.11731P(T&lt;15)=1(1e157)e1570.1173" role="presentation" style="position: relative;">.
    3. P(T > 15|T > 10) = P(T > 5) = 1&#x2212;(1&#x2212;e&#x2212;57)=e&#x2212;57&#x2248;0.48951(1e57)=e570.4895" role="presentation" style="position: relative;">.
    4. Let X = # of patients arriving during a half-hour period. Then X has the Poisson distribution with a mean of 307307" role="presentation" style="position: relative;">, X ∼ Poisson(307)(307)" role="presentation" style="position: relative;">. Find P(X > 8) = 1 – P(X ≤ 8) ≈ 0.0311.

    5.11: Solutions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?