Skip to main content
Statistics LibreTexts

10.2.1: Exercises

  • Page ID
    49075
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

    1. When performing a Goodness-of-Fit test, what distribution is used to find probabilities? 

       

       

       

       

       

       

    2. When performing a Goodness-of-Fit test, what type of test is used to find the P-value?

       

       

       

       

       

       

    3. performing a Goodness-of-Fit test, what is the alternative hypothesis?

       

       

       

       

       

       

    4. Use the Chi-Square distribution desmos graph, https://www.desmos.com/calculator/bjohldwaym, to find the P-value for the test statistic 9.28 using 5 degrees of freedom.

       

       

       

       

       

       

    5. Use the Chi-Square distribution desmos graph, https://www.desmos.com/calculator/bjohldwaym, to find the critical value that obtains around 5% in the right tail using 8 degrees of freedom.

       

       

       

       

       

       

       

    6. The marital status distribution of the U.S. male population, ages 15 and older, is as shown in the table below.
       

      Marital Status

      Percent

      never married

      31.3

      married

      56.1

      widowed

      2.5

      divorced/separated

      10.1


      Suppose that a random sample of 400 U.S. young adult males, 18 to 24 years old, yielded the following frequency distribution. We are interested in whether this age group of males fits the distribution of the U.S. adult population.
       

      Marital Status

      Observed Frequency

      never married

      140

      married

      238

      widowed

      2

      divorced/separated

      20

       
      1. State the null hypothesis:


        \(\begin{aligned}
        H_0:\ & p_1= \\ \\
        & p_2= \\ \\
        & p_3= \\ \\
        & p_4=
        \end{aligned}\)

         

      2. State the alternative hypothesis:

        \(H_a:\)















         

      3. Calculate the frequency one would expect when surveying 400 people. Fill in the table.

        Marital Status

        Percent

        Expected Frequency

        never married

        31.3

         

        married

        56.1

         

        widowed

        2.5

         

        divorced/separated

        10.1

         
      4. Explain why we can use the Chi-Square distribution to compute the P-value.

         

         

         

         

         

      5. Use the observed frequencies provided in the table below and the expected frequencies you found in part c. to compute each term in the test statistic. Round each term to five decimal places.
         

        Marital Status

        Observed Frequency

        Expected Frequency

        \(\frac{(O-E)^2}{E}\)

        never married

        140

           

        married

        238

           

        widowed

        2

           

        divorced/separated

        20

           
      6. Add all values in the fourth column of the table in e. to find the \(\chi^2\) test statistic.

         

         

         

         

         

      7. How many degrees of freedom are there?

         

         

         

         

         

      8. Use the Chi-Square distribution desmos graph, https://www.desmos.com/calculator/bjohldwaym, to find the P-value for the test statistic.

         

         

         

         

         

      9. What can you conclude about the null and alternative hypotheses?

         

         

         

         

         

         

         

         

      10. State the conclusion in context.







































         
    7. Conduct a goodness-of-fit test to determine if the actual college majors of graduating males fit the distribution of their expected majors.Round expected counts to five decimal places. Use this desmos graph, https://www.desmos.com/calculator/bjohldwaym, to compute the P-value.

      Major

      Men – Expected Major

      Men – Actual Major

      Arts & Humanities

      11.0%

      600

      Biological Sciences

      6.7%

      330

      Business

      22.7%

      1130

      Education

      5.8%

      305

      Engineering

      15.6%

      800

      Physical Sciences

      3.6%

      175

      Professional

      9.3%

      460

      Social Sciences

      7.6%

      370

      Technical

      1.8%

      90

      Other

      8.2%

      400

      Undecided

      6.6%

      340































       

    This page titled 10.2.1: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Hannah Seidler-Wright.

    • Was this article helpful?