# 29.3: The t-test as a Linear Model (Section 28.3)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We can also use lm() to implement these t-tests.

The one-sample t-test is basically a test for whether the intercept is different from zero, so we use a model with only an intercept and apply this to the data after subtracting the null hypothesis mean (so that the expectation under the null hypothesis is an intercept of zero):

NHANES_BP_sample <- NHANES_BP_sample %>%
mutate(BPSysAveDiff = BPSysAve-120)
lm_result <- lm(BPSysAveDiff ~ 1, data=NHANES_BP_sample)
summary(lm_result)
##
## Call:
## lm(formula = BPSysAveDiff ~ 1, data = NHANES_BP_sample)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -36.11 -13.11  -1.11   9.39  67.89
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)     3.11       1.41     2.2    0.029 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18 on 154 degrees of freedom

You will notice that this p-value is twice as big as the one obtained from the one-sample t-test above; this is because that was a one-tailed test, while lm() is performing a two-tailed test.

We can also run the two-sample t-test using lm():

lm_ttest_result <- lm(BPSysAve ~ SmokeNow, data=sample_df)
summary(lm_ttest_result)
##
## Call:
## lm(formula = BPSysAve ~ SmokeNow, data = sample_df)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -45.16 -11.16  -2.16   8.84 101.18
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  125.160      0.897  139.54  < 2e-16 ***
## SmokeNowYes   -5.341      1.269   -4.21  2.8e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18 on 784 degrees of freedom
## Multiple R-squared:  0.0221, Adjusted R-squared:  0.0209
## F-statistic: 17.7 on 1 and 784 DF,  p-value: 2.84e-05

This gives the same p-value for the SmokeNowYes variable as it did for the two-sample t-test above.

This page titled 29.3: The t-test as a Linear Model (Section 28.3) is shared under a not declared license and was authored, remixed, and/or curated by Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.