Skip to main content
Statistics LibreTexts

10.3: Appendix

  • Page ID
    8779
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Proof (Derivation of Bayes’ rule). First, remember the rule for computing a conditional probability:

    P(A|B)=P(AB)P(B) P(A|B) = \frac{P(A \cap B)}{P(B)}

    We can rearrange this to get the formula to compute the joint probability using the conditional:

    P(AB)=P(A|B)*P(B) P(A \cap B) = P(A|B) * P(B)

    Using this we can compute the inverse probability:

    P(B|A)=P(AB)P(A)=P(A|B)*P(B)P(A) P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B)*P(B)}{P(A)}


    10.3: Appendix is shared under a not declared license and was authored, remixed, and/or curated by Russell A. Poldrack via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.