Skip to main content
Library homepage
 
Statistics LibreTexts

9.4: Variability

  • Page ID
    8762
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Let’s first compute the variance, which is the average squared difference between each value and the mean. Let’s do this with our cleaned-up version of the height data, but instead of working with the entire dataset, let’s take a random sample of 150 individuals:

    height_sample <- NHANES %>%
      drop_na(Height) %>%
      sample_n(150) %>%
      pull(Height)

    First we need to obtain the sum of squared errors from the mean. In R, we can square a vector using **2:

    SSE <- sum((height_sample - mean(height_sample))**2)
    SSE
    ## [1] 63419

    Then we divide by N - 1 to get the estimated variance:

    var_est <- SSE/(length(height_sample) - 1)
    var_est
    ## [1] 426

    We can compare this to the built-in var() function:

    var(height_sample)
    ## [1] 426

    We can get the standard deviation by simply taking the square root of the variance:

    sqrt(var_est)
    ## [1] 21

    Which is the same value obtained using the built-in sd() function:

    sd(height_sample)
    ## [1] 21

    This page titled 9.4: Variability is shared under a not declared license and was authored, remixed, and/or curated by Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?