Skip to main content
Statistics LibreTexts

16.E: Transformations (Exercises)

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    General Questions


    When is a log transformation valuable?


    If the arithmetic mean of \(\log_{10}\) transformed data were \(3\), what would be the geometric mean?


    Using Tukey's ladder of transformation, transform the following data using a \(λ\) of \(0.5: 9, 16, 25\)


    What value of \(λ\) in Tukey's ladder decreases skew the most?


    What value of \(λ\) in Tukey's ladder increases skew the most?

    Question from Case Study


    In the ADHD case study, transform the data in the placebo condition (\(D0\)) with \(λ's\) of \(0.5\), \(0\), \(-0.5\), and \(-1\). How does the skew in each of these compare to the skew in the raw data. Which transformation leads to the least skew?

    This page titled 16.E: Transformations (Exercises) is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?