11.8: Chapter Formula Review
- Page ID
- 6135
Facts About the Chi-Square Distribution
\(x^{2}=\left(Z_{1}\right)^{2}+\left(Z_{2}\right)^{2}+\ldots\left(Z_{d f}\right)^{2}\) chi-square distribution random variable
\(\mu_{\chi}^{2}=d f\) chi-square distribution population mean
\(\sigma_{\chi^{2}}=\sqrt{2(d f)}\) Chi-Square distribution population standard deviation
Test of a Single Variance
\(\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}\) Test of a single variance statistic where:
\(n\): sample size
\(s\): sample standard deviation
\(\sigma_{0}\): hypothesized value of the population standard deviation
\(df = n – 1\) Degrees of freedom
Test of a Single Variance
- Use the test to determine variation.
- The degrees of freedom is the number of samples – 1.
- The test statistic is \(\frac{(n-1) s^{2}}{\sigma_{0}^{2}}\), where \(n\) = sample size, \(s^2\) = sample variance, and \(\sigma^2\) = population variance.
- The test may be left-, right-, or two-tailed.
Goodness-of-Fit Test
\(\sum_{k} \frac{(O-E)^{2}}{E}\) goodness-of-fit test statistic where:
\(O\): observed values
\(E\): expected values
\(k\): number of different data cells or categories
\(df = k − 1\) degrees of freedom
Test of Independence
Test of Independence
- The number of degrees of freedom is equal to (number of columns - 1)(number of rows - 1).
- The test statistic is \(\sum_{i \cdot j} \frac{(O-E)^{2}}{E}\) where \(O\) = observed values, \(E\) = expected values, \(i\) = the number of rows in the table, and \(j\) = the number of columns in the table.
- If the null hypothesis is true, the expected number \(E=\frac{(\text { row total })(\text { column total })}{\text { total surveyed }}\).
Test for Homogeneity
\(\sum_{i . j} \frac{(O-E)^{2}}{E}\) Homogeneity test statistic where: \(O\) = observed values
\(E\) = expected values
\(i\) = number of rows in data contingency table
\(j\) = number of columns in data contingency table
\(df = (i −1)(j −1)\) Degrees of freedom