# 7.5: Chapter Formula Review

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## 7.1 The Central Limit Theorem for Sample Means

The Central Limit Theorem for Sample Means:

$$\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)$$

$$Z=\frac{\overline{X}-\mu_{\overline{X}}}{\sigma_{X}}=\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}$$

The Mean $$\overline{X} : \mu_{\overline x}$$

Central Limit Theorem for Sample Means z-score $$z=\frac{\overline{x}-\mu_{\overline{x}}}{\left(\frac{\sigma}{\sqrt{n}}\right)}$$

Standard Error of the Mean (Standard Deviation $$(\overline{X}) ) : \frac{\sigma}{\sqrt{n}}$$

Finite Population Correction Factor for the sampling distribution of means: $$Z=\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}}$$

Finite Population Correction Factor for the sampling distribution of proportions: $$\sigma_{\mathrm{p}^{\prime}}=\sqrt{\frac{p(1-p)}{n}} \times \sqrt{\frac{N-n}{N-1}}$$

This page titled 7.5: Chapter Formula Review is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.