Skip to main content
Statistics LibreTexts

8.5: Chi Squared Distribution

  • Page ID
    51893
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The \(\chi^{2}\) (chi squared) distribution is a consequence of a random process based on the normal distribution. It is derived from the normal distribution as the result of the following stochastic process :

    1. Suppose you have a population that has variance \(\sigma^{2}\) and is normally distributed.
    2. Take a sample of size \(n\) from the population and compute \(x_{1} =\frac{(n-1)s_{1}^{2}}{\sigma^{2}}\) using the sample standard deviation \(s_{1}\) from that sample.
    3. Put the sample back into the population.
    4. Take another sample of size \(n\) from the population and compute \(x_{2} = \frac{(n-1)s_{2}^{2}}{\sigma}\) using the sample standard deviation \(s_{2}\) from that sample.
    5. etc.
    6. The distribution of the values of \(x_{i} = \frac{(n-1)s_{i}^{2}}{\sigma^{2}}\) values will be a \(\chi^{2}\) distribution with \(\nu = n-1\) degrees of freedom.

    Like the \(t\)-distributions, the \(\chi^2\) distributions are a family, see Figure 8.10.

    Figure-8.10-300x129.png
    Figure 8.10 : The \(\chi^{2}\) distributions are enumerated by degrees of freedom.

    The \(\chi^2\) distribution underlies why \(s\) is the best estimate for \(\sigma\). It mean, or expected value is \(\nu = n-1\) so the expected value of \(s\) is \(\sigma\). The expected value of quicklatex.com-180da479a6b905bc7d8722b49d952393_l3.png in a random sample of size \(n\) is not \(\sigma\).

    Confidence Intervals on \(\sigma\) and \(\sigma^{2}\)

    The \(\chi^{2}\) distribution is already normalized in its definition through including \(s\) in its definition. Therefore no \(z\)-transforms are needed and we can work directly with a table that gives right tail areas under the \(\chi^{2}\) distribution. That table is the Chi-squared Distribution Table, in the Appendix, and it gives values of \(\chi^2\) for given values of area to the right of \(\chi^2\), see Figure 8.11.

    Figure-8.11-300x142.png
    Figure 8.11 : The Chi-squared Distribution Table gives \(\chi^2\) associated with given right tail areas.

    We’ll need \(\chi^2_{\rm left}\) and \(\chi^2_{\rm right}\) such that the tail areas are equal and such that the area between them is \(\cal{C}\), see Figure 8.12.

    Figure-8.12-300x162.png
    Figure 8.12 : The values \(\chi^2_{\rm left}\) and \(\chi^2_{\rm right}\) define the confidence region \(\cal{C}\).

    Notation : Let’s call the \(\alpha\) in the Chi-squared Distribution Table \(\alpha_{T}\) and let \(\chi^2(\alpha_{T})\) be the table value that corresponds to \(\alpha_T\). In other words \(\chi^2(\alpha_{T})\) is the \(\chi^{2}\) value that corresponds to a right tail area of \(\alpha_{T}\).

    So given \(\cal{C}\), the appropriate \(\chi^{2}_{\rm left}\) and \(\chi^{2}_{\rm right}\) are the following values from the Chi-squared Distribution Table:

    \[\chi^{2}_{\rm right} = \chi^2 \left( \frac{1 - {\cal{C}}}{2} \right)\] \[\chi^{2}_{\rm left} = \chi^2 \left( 1- \left[ \frac{1 - {\cal{C}}}{2} \right] \right).\]

    Note the symmetry of the Chi-squared Distribution Table. If \(\chi^{2}_{\rm right}\) comes from the column 3 columns from the right edge of the table then \(\chi^{2}_{\rm left}\) comes from a column 3 columns from the left edge of the table. Only small and large areas appear in the table, there are no intermediate values.

    Finally, the confidence interval for \(\sigma^2\) is given by

    \[\frac{(n-1)s^{2}}{\chi^{2}_{\rm right}} < \sigma^2 < \frac{(n-1)s^2}{\chi^{-2}_{\rm left}}\]

    and for \(\sigma\) by:

    \[\sqrt{\frac{(n-1)s^2}{\chi^2_{\rm right}}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi^2_{\rm left}}}\]

    Where the \(\chi^2\) distribution with \(\nu = n-1\) degrees of freedom (giving the line to use in the Chi-squared Distribution Table) is used.

    Example 8.5 : Find the 90\(\%\) confidence interval on \(\sigma\) and \(\sigma^2\) for the following data

    \[59, 54, 53, 52, 51, 39, 49, 46, 49, 48\]

    Solution : Compute, using your calculator :

    \[s^2 = 28.2\] \[\nu =n-1 = 9.\]

    From the Chi-squared Distribution Table, in the \(\nu = 9\) line, find :

    \[\chi^2_{\rm right} = \chi^2 \left( \frac{1-0.90}{2}\right) = \chi^2(0.05) = 16.919\]

    and

    \[\chi^2_{\rm left} = \chi^2 (1-0.05) = \chi^2(0.95) = 3.325\]

    So

    \[\begin{align*} \frac{(n-1)s^2}{\chi^2_{\rm right}} &< \sigma^{2} < \frac{(n-1)s^2}{\chi^2_{\rm left}}\\ \frac{9 \cdot 28.2}{16.919} &< \sigma^{2} < \frac{9 \cdot 28.2}{3.325}\\ 15.0 &< \sigma^2 < 76.3 \hspace{1in} \mbox{with 90\% confidence.} \end{align*}\]

    Taking square roots:

    \[3.87 < \sigma < 8.73 \hspace{1in} \mbox{with 90\% confidence.}\]


    This page titled 8.5: Chi Squared Distribution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gordon E. Sarty via source content that was edited to the style and standards of the LibreTexts platform.