12.9: Homework
- Page ID
- 46018
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)12.2 Test of Two Variances
Linda's rats | Tuan's rats | Javier's rats |
---|---|---|
43.5 | 47.0 | 51.2 |
39.4 | 40.5 | 40.9 |
41.3 | 38.9 | 37.9 |
46.0 | 46.3 | 45.0 |
38.2 | 44.2 | 48.6 |
Table \(\PageIndex{1}\)
Determine whether or not the variance in weight gain is statistically the same among Javier’s and Linda’s rats. Test at a significance level of 10%.
Working-class | Professional (middle incomes) | Professional (wealthy) |
---|---|---|
17.8 | 16.5 | 8.5 |
26.7 | 17.4 | 6.3 |
49.4 | 22.0 | 4.6 |
9.4 | 7.4 | 12.6 |
65.4 | 9.4 | 11.0 |
47.1 | 2.1 | 28.6 |
19.5 | 6.4 | 15.4 |
51.2 | 13.9 | 9.3 |
Table \(\PageIndex{2}\)
Determine whether or not the variance in mileage driven is statistically the same among the working class and professional (middle income) groups. Use a 5% significance level.
Use the following information to answer the next two exercises. The following table lists the number of pages in four different types of magazines.
Home decorating | News | Health | Computer |
---|---|---|---|
172 | 87 | 82 | 104 |
286 | 94 | 153 | 136 |
163 | 123 | 87 | 98 |
205 | 106 | 103 | 207 |
197 | 101 | 96 | 146 |
Table \(\PageIndex{3}\)
Saturday | Sunday | Saturday | Sunday |
---|---|---|---|
75 | 44 | 62 | 137 |
18 | 58 | 0 | 82 |
150 | 61 | 124 | 39 |
94 | 19 | 50 | 127 |
62 | 99 | 31 | 141 |
73 | 60 | 118 | 73 |
89 |
Table \(\PageIndex{4}\)
East | West |
---|---|
38 | 71 |
47 | 126 |
30 | 42 |
82 | 51 |
75 | 44 |
52 | 90 |
115 | 88 |
67 |
Table \(\PageIndex{5}\)
Here are the data:
0 mg | 100 mg | 200 mg | 0 mg | 100 mg | 200 mg |
---|---|---|---|---|---|
242 | 248 | 246 | 245 | 246 | 248 |
244 | 245 | 250 | 248 | 247 | 252 |
247 | 248 | 248 | 248 | 250 | 250 |
242 | 247 | 246 | 244 | 246 | 248 |
246 | 243 | 245 | 242 | 244 | 250 |
Table \(\PageIndex{6}\)
First coinage | Second coinage | Third coinage | Fourth coinage |
---|---|---|---|
5.9 | 6.9 | 4.9 | 5.3 |
6.8 | 9.0 | 5.5 | 5.6 |
6.4 | 6.6 | 4.6 | 5.5 |
7.0 | 8.1 | 4.5 | 5.1 |
6.6 | 9.3 | 6.2 | |
7.7 | 9.2 | 5.8 | |
7.2 | 8.6 | 5.8 | |
6.9 | |||
6.2 |
Table \(\PageIndex{7}\)
Did the silver content of the coins change over the course of Manuel’s reign?
Here are the means and variances of each coinage. The data are unbalanced.
First | Second | Third | Fourth | |
---|---|---|---|---|
Mean | 6.7444 | 8.2429 | 4.875 | 5.6143 |
Variance | 0.2953 | 1.2095 | 0.2025 | 0.1314 |
Table \(\PageIndex{8}\)
Division | Team | Wins |
---|---|---|
East | NY Yankees | 95 |
East | Baltimore | 93 |
East | Tampa Bay | 90 |
East | Toronto | 73 |
East | Boston | 69 |
Table \(\PageIndex{9}\)
Division | Team | Wins |
---|---|---|
Central | Detroit | 88 |
Central | Chicago Sox | 85 |
Central | Kansas City | 72 |
Central | Cleveland | 68 |
Central | Minnesota | 66 |
Table \(\PageIndex{10}\)
Division | Team | Wins |
---|---|---|
West | Oakland | 94 |
West | Texas | 93 |
West | LA Angels | 89 |
West | Seattle | 75 |
Table \(\PageIndex{11}\)
12.3 One-Way ANOVA
Route 1 | Route 2 | Route 3 |
---|---|---|
30 | 27 | 16 |
32 | 29 | 41 |
27 | 28 | 22 |
35 | 36 | 31 |
Table \(\PageIndex{12}\)
State SSbetween, SSwithin, and the F statistic.
Northeast | South | West | Central | East | |
---|---|---|---|---|---|
16.3 | 16.9 | 16.4 | 16.2 | 17.1 | |
16.1 | 16.5 | 16.5 | 16.6 | 17.2 | |
16.4 | 16.4 | 16.6 | 16.5 | 16.6 | |
16.5 | 16.2 | 16.1 | 16.4 | 16.8 | |
x–=𝑥–= | ________ | ________ | ________ | ________ | ________ |
s2=𝑠2= | ________ | ________ | ________ | ________ | ________ |
Table \(\PageIndex{13}\)
State the hypotheses.
H0: ____________
Ha: ____________
12.4 The F Distribution and the F-Ratio
Use the following information to answer the next three exercises. Suppose a group is interested in determining whether teenagers obtain their drivers licenses at approximately the same average age across the country. Suppose that the following data are randomly collected from five teenagers in each region of the country. The numbers represent the age at which teenagers obtained their drivers licenses.
Northeast | South | West | Central | East | |
---|---|---|---|---|---|
16.3 | 16.9 | 16.4 | 16.2 | 17.1 | |
16.1 | 16.5 | 16.5 | 16.6 | 17.2 | |
16.4 | 16.4 | 16.6 | 16.5 | 16.6 | |
16.5 | 16.2 | 16.1 | 16.4 | 16.8 | |
x–=𝑥–= | ________ | ________ | ________ | ________ | ________ |
s2=𝑠2= | ________ | ________ | ________ | ________ | ________ |
Table \(\PageIndex{14}\)
H0: µ1 = µ2 = µ3 = µ4 = µ5
Hα: At least any two of the group means µ1, µ2, …, µ5 are not equal.
12.5 Facts About the F Distribution
Linda's rats | Tuan's rats | Javier's rats |
---|---|---|
43.5 | 47.0 | 51.2 |
39.4 | 40.5 | 40.9 |
41.3 | 38.9 | 37.9 |
46.0 | 46.3 | 45.0 |
38.2 | 44.2 | 48.6 |
Table \(\PageIndex{15}\) Weights of Student Lab Rats
Working-class | Professional (middle incomes) | Professional (wealthy) |
---|---|---|
17.8 | 16.5 | 8.5 |
26.7 | 17.4 | 6.3 |
49.4 | 22.0 | 4.6 |
9.4 | 7.4 | 12.6 |
65.4 | 9.4 | 11.0 |
47.1 | 2.1 | 28.6 |
19.5 | 6.4 | 15.4 |
51.2 | 13.9 | 9.3 |
Table \(\PageIndex{16}\)
Use the following information to answer the next two exercises. Table \(\PageIndex{17}\) lists the number of pages in four different types of magazines.
Home decorating | News | Health | Computer |
---|---|---|---|
172 | 87 | 82 | 104 |
286 | 94 | 153 | 136 |
163 | 123 | 87 | 98 |
205 | 106 | 103 | 207 |
197 | 101 | 96 | 146 |
Table \(\PageIndex{17}\)
71. Using a significance level of 5%, test the hypothesis that the four magazine types have the same mean length.CNN | FOX | Local |
---|---|---|
45 | 15 | 72 |
12 | 43 | 37 |
18 | 68 | 56 |
38 | 50 | 60 |
23 | 31 | 51 |
35 | 22 |
Table \(\PageIndex{18}\)
Assume that all distributions are normal, the four population standard deviations are approximately the same, and the data were collected independently and randomly. Use a level of significance of 0.05.
Online | Hybrid | Face-to-Face |
---|---|---|
72 | 83 | 80 |
84 | 73 | 78 |
77 | 84 | 84 |
80 | 81 | 81 |
81 | 86 | |
79 | ||
82 |
Table \(\PageIndex{19}\)
Assume that all distributions are normal, the four population standard deviations are approximately the same, and the data were collected independently and randomly. Use a level of significance of 0.05.
White | Black | Hispanic | Asian |
---|---|---|---|
6 | 4 | 7 | 8 |
8 | 1 | 3 | 3 |
2 | 5 | 5 | 5 |
4 | 2 | 4 | 1 |
6 | 6 | 7 |
Table \(\PageIndex{20}\)
Assume that all distributions are normal, the four population standard deviations are approximately the same, and the data were collected independently and randomly. Use a level of significance of 0.05.
Powder | Machine Made | Hard Packed |
---|---|---|
1,210 | 2,107 | 2,846 |
1,080 | 1,149 | 1,638 |
1,537 | 862 | 2,019 |
941 | 1,870 | 1,178 |
1,528 | 2,233 | |
1,382 |
Table \(\PageIndex{21}\)
Assume that all distributions are normal, the four population standard deviations are approximately the same, and the data were collected independently and randomly. Use a level of significance of 0.05.
Paper type/Trial | Trial 1 | Trial 2 | Trial 3 | Trial 4 |
---|---|---|---|---|
Heavy | 5.1 meters | 3.1 meters | 4.7 meters | 5.3 meters |
Medium | 4 meters | 3.5 meters | 4.5 meters | 6.1 meters |
Light | 3.1 meters | 3.3 meters | 2.1 meters | 1.9 meters |
Table \(\PageIndex{22}\)
Figure 12.8
- Take a look at the data in the graph. Look at the spread of data for each group (light, medium, heavy). Does it seem reasonable to assume a normal distribution with the same variance for each group? Yes or No.
- Why is this a balanced design?
- Calculate the sample mean and sample standard deviation for each group.
- Does the weight of the paper have an effect on how far the plane will travel? Use a 1% level of significance. Complete the test using the method shown in the bean plant example in Figure 12.8.
- variance of the group means __________
- MSbetween= ___________
- mean of the three sample variances ___________
- MSwithin = _____________
- F statistic = ____________
- df(num) = __________, df(denom) = ___________
- number of groups _______
- number of observations _______
- p-value = __________ (P(F > _______) = __________)
- Graph the p-value.
- decision: _______________________
- conclusion: _______________________________________________________________
An experiment was conducted on the number of eggs (fecundity) laid by female fruit flies. There are three groups of flies. One group was bred to be resistant to DDT (the RS group). Another was bred to be especially susceptible to DDT (SS). Finally there was a control line of non-selected or typical fruitflies (NS). Here are the data:
RS | SS | NS | RS | SS | NS |
---|---|---|---|---|---|
12.8 | 38.4 | 35.4 | 22.4 | 23.1 | 22.6 |
21.6 | 32.9 | 27.4 | 27.5 | 29.4 | 40.4 |
14.8 | 48.5 | 19.3 | 20.3 | 16 | 34.4 |
23.1 | 20.9 | 41.8 | 38.7 | 20.1 | 30.4 |
34.6 | 11.6 | 20.3 | 26.4 | 23.3 | 14.9 |
19.7 | 22.3 | 37.6 | 23.7 | 22.9 | 51.8 |
22.6 | 30.2 | 36.9 | 26.1 | 22.5 | 33.8 |
29.6 | 33.4 | 37.3 | 29.5 | 15.1 | 37.9 |
16.4 | 26.7 | 28.2 | 38.6 | 31 | 29.5 |
20.3 | 39 | 23.4 | 44.4 | 16.9 | 42.4 |
29.3 | 12.8 | 33.7 | 23.2 | 16.1 | 36.6 |
14.9 | 14.6 | 29.2 | 23.6 | 10.8 | 47.4 |
27.3 | 12.2 | 41.7 |
Table 12.40
The values are the average number of eggs laid daily for each of 75 flies (25 in each group) over the first 14 days of their lives. Using a 1% level of significance, are the mean rates of egg selection for the three strains of fruitfly different? If so, in what way? Specifically, the researchers were interested in whether or not the selectively bred strains were different from the nonselected line, and whether the two selected lines were different from each other.
Here is a chart of the three groups:
Figure 12.9
Traditionally we are taught that the normal human body temperature is 98.6 F. This is not quite correct for everyone. Are the mean temperatures among the four groups different?
Calculate 95% confidence intervals for the mean body temperature in each group and comment about the confidence intervals.
FL | FH | ML | MH | FL | FH | ML | MH |
---|---|---|---|---|---|---|---|
96.4 | 96.8 | 96.3 | 96.9 | 98.4 | 98.6 | 98.1 | 98.6 |
96.7 | 97.7 | 96.7 | 97 | 98.7 | 98.6 | 98.1 | 98.6 |
97.2 | 97.8 | 97.1 | 97.1 | 98.7 | 98.6 | 98.2 | 98.7 |
97.2 | 97.9 | 97.2 | 97.1 | 98.7 | 98.7 | 98.2 | 98.8 |
97.4 | 98 | 97.3 | 97.4 | 98.7 | 98.7 | 98.2 | 98.8 |
97.6 | 98 | 97.4 | 97.5 | 98.8 | 98.8 | 98.2 | 98.8 |
97.7 | 98 | 97.4 | 97.6 | 98.8 | 98.8 | 98.3 | 98.9 |
97.8 | 98 | 97.4 | 97.7 | 98.8 | 98.8 | 98.4 | 99 |
97.8 | 98.1 | 97.5 | 97.8 | 98.8 | 98.9 | 98.4 | 99 |
97.9 | 98.3 | 97.6 | 97.9 | 99.2 | 99 | 98.5 | 99 |
97.9 | 98.3 | 97.6 | 98 | 99.3 | 99 | 98.5 | 99.2 |
98 | 98.3 | 97.8 | 98 | 99.1 | 98.6 | 99.5 | |
98.2 | 98.4 | 97.8 | 98 | 99.1 | 98.6 | ||
98.2 | 98.4 | 97.8 | 98.3 | 99.2 | 98.7 | ||
98.2 | 98.4 | 97.9 | 98.4 | 99.4 | 99.1 | ||
98.2 | 98.4 | 98 | 98.4 | 99.9 | 99.3 | ||
98.2 | 98.5 | 98 | 98.6 | 100 | 99.4 | ||
98.2 | 98.6 | 98 | 98.6 | 100.8 |
Table 12.41