Skip to main content
Statistics LibreTexts

5.5: Descriptive Statistics Separately for each Group

  • Page ID
    3969
  • It is very commonly the case that you find yourself needing to look at descriptive statistics, broken down by some grouping variable. This is pretty easy to do in R, and there are three functions in particular that are worth knowing about: by()describeBy() and aggregate(). Let’s start with the describeBy() function, which is part of the psych package. The describeBy() function is very similar to the describe() function, except that it has an additional argument called group which specifies a grouping variable. For instance, let’s say, I want to look at the descriptive statistics for the clin.trial data, broken down separately by therapy type. The command I would use here is:

    describeBy( x=clin.trial, group=clin.trial$therapy )
    ## 
    ##  Descriptive statistics by group 
    ## group: no.therapy
    ##           vars n mean   sd median trimmed  mad min max range skew kurtosis
    ## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0 0.00    -1.81
    ## therapy*     2 9 1.00 0.00    1.0    1.00 0.00 1.0 1.0   0.0  NaN      NaN
    ## mood.gain    3 9 0.72 0.59    0.5    0.72 0.44 0.1 1.7   1.6 0.51    -1.59
    ##             se
    ## drug*     0.29
    ## therapy*  0.00
    ## mood.gain 0.20
    ## -------------------------------------------------------- 
    ## group: CBT
    ##           vars n mean   sd median trimmed  mad min max range  skew
    ## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0  0.00
    ## therapy*     2 9 2.00 0.00    2.0    2.00 0.00 2.0 2.0   0.0   NaN
    ## mood.gain    3 9 1.04 0.45    1.1    1.04 0.44 0.3 1.8   1.5 -0.03
    ##           kurtosis   se
    ## drug*        -1.81 0.29
    ## therapy*       NaN 0.00
    ## mood.gain    -1.12 0.15

    As you can see, the output is essentially identical to the output that the describe() function produce, except that the output now gives you means, standard deviations etc separately for the CBT group and the no.therapy group. Notice that, as before, the output displays asterisks for factor variables, in order to draw your attention to the fact that the descriptive statistics that it has calculated won’t be very meaningful for those variables. Nevertheless, this command has given us some really useful descriptive statistics mood.gain variable, broken down as a function of therapy.

    A somewhat more general solution is offered by the by() function. There are three arguments that you need to specify when using this function: the data argument specifies the data set, the INDICES argument specifies the grouping variable, and the FUN argument specifies the name of a function that you want to apply separately to each group. To give a sense of how powerful this is, you can reproduce the describeBy() function by using a command like this:

    by( data=clin.trial, INDICES=clin.trial$therapy, FUN=describe )
    ## clin.trial$therapy: no.therapy
    ##           vars n mean   sd median trimmed  mad min max range skew kurtosis
    ## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0 0.00    -1.81
    ## therapy*     2 9 1.00 0.00    1.0    1.00 0.00 1.0 1.0   0.0  NaN      NaN
    ## mood.gain    3 9 0.72 0.59    0.5    0.72 0.44 0.1 1.7   1.6 0.51    -1.59
    ##             se
    ## drug*     0.29
    ## therapy*  0.00
    ## mood.gain 0.20
    ## -------------------------------------------------------- 
    ## clin.trial$therapy: CBT
    ##           vars n mean   sd median trimmed  mad min max range  skew
    ## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0  0.00
    ## therapy*     2 9 2.00 0.00    2.0    2.00 0.00 2.0 2.0   0.0   NaN
    ## mood.gain    3 9 1.04 0.45    1.1    1.04 0.44 0.3 1.8   1.5 -0.03
    ##           kurtosis   se
    ## drug*        -1.81 0.29
    ## therapy*       NaN 0.00
    ## mood.gain    -1.12 0.15

    This will produce the exact same output as the command shown earlier. However, there’s nothing special about the describe() function. You could just as easily use the by() function in conjunction with the summary() function. For example:

    by( data=clin.trial, INDICES=clin.trial$therapy, FUN=summary ) 
    ## clin.trial$therapy: no.therapy
    ##        drug         therapy    mood.gain     
    ##  placebo :3   no.therapy:9   Min.   :0.1000  
    ##  anxifree:3   CBT       :0   1st Qu.:0.3000  
    ##  joyzepam:3                  Median :0.5000  
    ##                              Mean   :0.7222  
    ##                              3rd Qu.:1.3000  
    ##                              Max.   :1.7000  
    ## -------------------------------------------------------- 
    ## clin.trial$therapy: CBT
    ##        drug         therapy    mood.gain    
    ##  placebo :3   no.therapy:0   Min.   :0.300  
    ##  anxifree:3   CBT       :9   1st Qu.:0.800  
    ##  joyzepam:3                  Median :1.100  
    ##                              Mean   :1.044  
    ##                              3rd Qu.:1.300  
    ##                              Max.   :1.800

    Again, this output is pretty easy to interpret. It’s the output of the summary() function, applied separately to CBT group and the no.therapy group. For the two factors (drug and therapy) it prints out a frequency table, whereas for the numeric variable (mood.gain) it prints out the range, interquartile range, mean and median.

    What if you have multiple grouping variables? Suppose, for example, you would like to look at the average mood gain separately for all possible combinations of drug and therapy. It is actually possible to do this using the by() and describeBy() functions, but I usually find it more convenient to use the aggregate() function in this situation. There are again three arguments that you need to specify. The formula argument is used to indicate which variable you want to analyse, and which variables are used to specify the groups. For instance, if you want to look at mood.gain separately for each possible combination of drug and therapy, the formula you want is mood.gain ~ drug + therapy. The data argument is used to specify the data frame containing all the data, and the FUN argument is used to indicate what function you want to calculate for each group (e.g., the mean). So, to obtain group means, use this command:

    aggregate( formula = mood.gain ~ drug + therapy,  # mood.gain by drug/therapy combination
                data = clin.trial,                     # data is in the clin.trial data frame
                FUN = mean                             # print out group means
     )
    
    ##       drug    therapy mood.gain
    ## 1  placebo no.therapy  0.300000
    ## 2 anxifree no.therapy  0.400000
    ## 3 joyzepam no.therapy  1.466667
    ## 4  placebo        CBT  0.600000
    ## 5 anxifree        CBT  1.033333
    ## 6 joyzepam        CBT  1.500000

    or, alternatively, if you want to calculate the standard deviations for each group, you would use the following command (argument names omitted this time):

    aggregate( mood.gain ~ drug + therapy, clin.trial, sd )
    
    ##       drug    therapy mood.gain
    ## 1  placebo no.therapy 0.2000000
    ## 2 anxifree no.therapy 0.2000000
    ## 3 joyzepam no.therapy 0.2081666
    ## 4  placebo        CBT 0.3000000
    ## 5 anxifree        CBT 0.2081666
    ## 6 joyzepam        CBT 0.2645751