Skip to main content
Statistics LibreTexts

11.1: Facts About the Chi-Square Distribution

  • Page ID
    4611
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    The notation for the chi-square distribution is:

    \[\chi \sim \chi_{d f}^{2}\nonumber\]

    where \(df\) = degrees of freedom which depends on how chi-square is being used. (If you want to practice calculating chi-square probabilities then use \(df = n - 1\). The degrees of freedom for the three major uses are each calculated differently.)

    For the \(\chi^2\) distribution, the population mean is \(\mu = df\) and the population standard deviation is \(\sigma=\sqrt{2(d f)}\).

    The random variable is shown as \(\chi^2\).

    The random variable for a chi-square distribution with \(k\) degrees of freedom is the sum of \(k\) independent, squared standard normal variables.

    \[\chi^{2}=\left(Z_{1}\right)^{2}+\left(Z_{2}\right)^{2}+\ldots+\left(Z_{k}\right)^{2}\nonumber\]

    1. The curve is non-symmetrical and skewed to the right.
    2. There is a different chi-square curve for each \(df\) (\(\PageIndex{1}\)).
    3. The test statistic for any test is always greater than or equal to zero.
    4. When \(df > 90\), the chi-square curve approximates the normal distribution. For \(\chi \sim \chi_{1,000}^{2}\) the mean, \(\mu = df = 1,000\) and the standard deviation, \(\sigma=\sqrt{2(1,000)}=44.7\). Therefore, \(\chi \sim N(1,000,44.7)\), approximately.
    5. The mean, \(\mu\), is located just to the right of the peak.
    Part (a) shows a chi-square curve with 2 degrees of freedom. It is nonsymmetrical and slopes downward continually. Part (b) shows a chi-square curve with 24 df. This nonsymmetrical curve does have a peak and is skewed to the right. The graphs illustrate that different degrees of freedom produce different chi-square curves.
    Figure \(\PageIndex{1}\)

    11.1: Facts About the Chi-Square Distribution is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.