# 6.4: Chapter Formula Review

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## Introduction

$$X \sim N(\mu, \sigma)$$

$$\mu =$$ the mean; $$\sigma =$$ the standard deviation

## The Standard Normal Distribution

$$Z \sim N(0, 1)$$

$$z = a$$ standardized value (z-score)

mean = 0; standard deviation = 1

To find the $$k^{\text{th}}$$ percentile of $$X$$ when the z-scores is known:
$$k = \mu + (z)\sigma$$

z-score: $$z=\frac{x-\mu}{\sigma}$$ or $$z=\frac{|x-\mu|}{\sigma}$$

$$Z =$$ the random variable for z-scores

$$Z \sim N(0, 1)$$

## Estimating the Binomial with the Normal Distribution

Normal Distribution: $$X \sim N(\mu, \sigma)$$ where $$\mu$$ is the mean and $$\sigma$$ is the standard deviation.

Standard Normal Distribution: $$Z \sim N(0, 1)$$.

6.4: Chapter Formula Review is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.