Table of Contents

Learning Statistics with R covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software. The book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. Then the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered afterward.

• **1: Why Do We Learn Statistics?**
 - 1.1: On the Psychology of Statistics
 - 1.2: The Cautionary Tale of Simpson's Paradox
 - 1.3: Statistics in Psychology
 - 1.4: Statistics in Everyday Life
 - 1.5: There's More to Research Methods Than Statistics

• **2: A Brief Introduction to Research Design**
 - 2.1: Introduction to Psychological Measurement
 - 2.2: Scales of Measurement
 - 2.3: Assessing the Reliability of a Measurement
 - 2.4: The “Role” of Variables- Predictors and Outcomes
 - 2.5: Experimental and Non-experimental Research
 - 2.6: Assessing the Validity of a Study
2.7: Confounds, Artifacts and Other Threats to Validity
2.8: Summary

3: Getting Started with R
3.1: Installing R
3.2: Typing Commands at the R Console
3.3: Doing Simple Calculations with R
3.4: Storing a Number As a Variable
3.5: Using Functions to Do Calculations
3.6: Letting RStudio Help You with Your Commands
3.7: Storing Many Numbers As a Vector
3.8: Storing Text Data
3.9: Storing “True or False” Data
3.10: Indexing Vectors
3.11: Quitting R
3.12: Summary

4: Additional R Concepts
4.1: Using Comments
4.2: Installing and Loading Packages
4.3: Managing the Workspace
4.4: Navigating the File System
4.5: Loading and Saving Data
4.6: Useful Things to Know about Variables
4.7: Factors
4.8: Data frames
4.9: Lists
4.10: Formulas
4.11: Generic Functions
4.12: Getting help
4.13: Summary

5: Descriptive Statistics
5.1: Measures of Central Tendency
5.2: Measures of Variability
5.3: Skew and Kurtosis
5.4: Getting an Overall Summary of a Variable
5.5: Descriptive Statistics Separately for each Group
5.6: Standard Scores
5.7: Correlations
5.8: Handling Missing Values
5.9: Summary
5.10: Epilogue- Good Descriptive Statistics Are Descriptive!

6: Drawing Graphs
6.1: An Overview of R Graphics
6.2: An Introduction to Plotting
6.3: Histograms
6.4: Stem and Leaf Plots
6.5: Boxplots
6.6: Scatterplots
6.7: Bar Graphs
6.8: Saving Image Files Using R and Rstudio
6.9: Summary

7: Pragmatic Matters
7.1: Tabulating and Cross-tabulating Data
7.2: Transforming and Recoding a Variable
7.3: A few More Mathematical Functions and Operations
7.4: Extracting a Subset of a Vector
7.5: Extracting a Subset of a Data Frame
7.6: Sorting, Flipping and Merging Data
7.7: Reshaping a Data Frame
7.8: Working with Text
7.9: Reading Unusual Data Files
7.10: Coercing Data from One Class to Another
7.11: Other Useful Data Structures
7.12: Miscellaneous Topics
7.13: Summary

8: Basic Programming
8.1: Scripts
12: Categorical Data Analysis

- 12.1: The χ² Goodness-of-fit Test
- 12.2: The χ² test of independence (or association)
- 12.3: The Continuity Correction
- 12.4: Effect Size
- 12.5: Assumptions of the Test(s)
- 12.6: The Most Typical Way to Do Chi-square Tests in R
- 12.7: The Fisher Exact Test
- 12.8: The McNemar Test
- 12.9: What’s the Difference Between McNemar and Independence?
- 12.10: Summary

13: Comparing Two Means

- 13.1: The one-sample z-test
- 13.2: The One-sample t-test
- 13.3: The Independent Samples t-test (Student Test)
- 13.4: The Independent Samples t-test (Welch Test)
- 13.5: The Paired-samples t-test
- 13.6: One Sided Tests
- 13.7: Using the t.test() Function
- 13.8: Effect Size
- 13.9: Checking the Normality of a Sample
- 13.10: Testing Non-normal Data with Wilcoxon Tests
- 13.11: Summary

14: Comparing Several Means (One-way ANOVA)

- 14.1: Summary
- 14.2: An Illustrative Data Set
- 14.3: How ANOVA Works
- 14.4: Running an ANOVA in R
- 14.5: Effect Size
- 14.6: Multiple Comparisons and Post Hoc Tests
- 14.7: Assumptions of One-way ANOVA
- 14.8: Checking the Homogeneity of Variance Assumption
- 14.9: Removing the Homogeneity of Variance Assumption
- 14.10: Checking the Normality Assumption
14.11: Removing the Normality Assumption
14.12: On the Relationship Between ANOVA and the Student t Test

15: Linear Regression
15.1: What Is a Linear Regression Model?
15.2: Estimating a Linear Regression Model
15.3: Multiple Linear Regression
15.4: Quantifying the Fit of the Regression Model
15.5: Hypothesis Tests for Regression Models
15.6: Testing the Significance of a Correlation
15.7: Regarding Regression Coefficients
15.8: Assumptions of Regression
15.9: Model Checking
15.10: Model Selection
15.11: Summary

16: Factorial ANOVA
16.1: Factorial ANOVA 1- Balanced Designs, No Interactions
16.2: Factorial ANOVA 2- Balanced Designs, Interactions Allowed
16.3: Effect Size, Estimated Means, and Confidence Intervals
16.4: Assumption Checking
16.5: The F test as a model comparison
16.6: ANOVA As a Linear Model
16.7: Different Ways to Specify Contrasts
16.8: Post Hoc Tests
16.9: The Method of Planned Comparisons
16.10: Factorial ANOVA 3- Unbalanced Designs
16.11: Summary

17: Bayesian Statistics
17.1: Probabilistic Reasoning by Rational Agents
17.2: Bayesian Hypothesis Tests
17.3: Why Be a Bayesian?
17.4: Evidentiary Standards You Can Believe
17.5: The p-value Is a Lie.
17.6: Bayesian Analysis of Contingency Tables
• 17.7: Bayesian t-tests
• 17.8: Bayesian Regression
• 17.9: Bayesian ANOVA
• 17.10: Summary

• 18: Epilogue
 • 18.1: The Undiscovered Statistics
 • 18.2: Statistical Models Missing from the Book
 • 18.3: Learning the Basics, and Learning Them in R
 • 18.4: Other Ways of Doing Inference
 • 18.5: Section 5-
 • 18.6: Section 6-

• Back Matter
 • Index
 • Glossary