Two-Factor ANOVA model with n = 1 (no replication)

1. Two-factor ANOVA model with n = 1 (no replication)
 1.1 Two-factor model without interaction
 Sum of squares
 ANOVA Table
 F tests (for main effects)
 Estimation of means
 1.2 Example: Insurance
 Sum of squares:
 1.3 Checking for the presence of interaction: Tukey's test for additivity
 Estimation of \(D\)

Contributors

1. Two-factor ANOVA model with n = 1 (no replication)

- For some studies, there is only one replicate per treatment, i.e., n = 1.
- ANOVA model for two-factor studies need to be modified, since
 - the degrees of freedom associated with \(\text{SSE}\) will be \((n - 1)ab = 0\);
 - thus the error variance \(\text{\sigma^2}\) can not be estimated by \(\text{SSE}\) anymore.
- Idea: make the model simpler by assuming the two factors do not interact with each other. Validity of this assumption needs to be checked.
1.1 Two-factor model without interaction

With n = 1.

- Model equation:
 \[Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad i = 1, ..., a, \quad j = 1, ..., b. \]

- Identifiability constraints:
 \[\sum_{i=1}^{a} \alpha_i = 0, \quad \sum_{j=1}^{b} \beta_j = 0. \]

- Distributional assumptions: \(\epsilon_{ij} \) are i.i.d. \(N(0, \sigma^2) \)

Sum of squares

Interaction sum of squares now plays the role of error sum of squares.

\[
SSAB = n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{Y}_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2
\]

\[
MSAB = \frac{SSAB}{(a-1)(b-1)} \quad \text{since d.f.(SSAB) = (a-1)(b-1)}.
\]

- In the general two-factor ANOVA model (when n = 1),
 \[
 E(MSAB) = \sigma^2 + \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} (\alpha \beta)_{ij}^2}{(a-1)(b-1)}
 \]

- Under the model without interaction: \(E(MSAB) = \sigma^2 \)

Thus \(MSAB \) can be used to estimate \(\sigma^2 \).

ANOVA Table

ANOVA table for two-factor model without interaction and \(n=1 \)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A</td>
<td>(SSA = b \sum_i \overline{Y}{i.}^2) - (\overline{Y}{..}^2)</td>
<td>(a - 1)</td>
<td>(MSA)</td>
</tr>
<tr>
<td>Factor B</td>
<td>(SSB = a \sum_j \overline{Y}{.j}^2) - (\overline{Y}{..}^2)</td>
<td>(b - 1)</td>
<td>(MSB)</td>
</tr>
<tr>
<td>Error</td>
<td>(SSAB = \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{Y}{ij} - \overline{Y}{i.} - \overline{Y}{.j} + \overline{Y}{..})^2)</td>
<td>((a - 1)(b - 1))</td>
<td>(MSAB)</td>
</tr>
</tbody>
</table>
\[\sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{Y}_{ij} - \overline{Y}_{..})^2 \]

Total

\[\sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{Y}_{ij} - \overline{Y}_{..})^2 \]

Expected mean squares (under no interaction):

\[E(MSA) = \sigma^2 + \frac{b \sum_{i=1}^{a} \alpha_i^2}{a - 1}, E(MSB) = \sigma^2 + \frac{a \sum_{j=1}^{b} \beta_j^2}{b - 1}, E(MSAB) = \sigma^2 \]

F tests (for main effects)

Test factor A main effects: \(H_o: \alpha_1 = \cdots = \alpha_a = 0 \) vs. \(H_a: \) not all \(\alpha_i \)'s are equal to zero.

- \(F_A^* = \frac{MSA}{MSAB} \sim F_{a - 1, (a - 1)(b - 1)} \) under \(H_o \).
- Reject \(H_o \) at level of significance \(\alpha \) if observed \(F_A^* > F(1 - \alpha; a - 1, (a - 1)(b - 1)) \).

Test factor B main effects: \(H_o: \beta_1 = \cdots = \beta_b = 0 \) vs. \(H_a: \) not all \(\beta_j \)'s are equal to zero.

- \(F_B^* = \frac{MSB}{MSAB} \sim F_{b - 1, (a - 1)(b - 1)} \) under \(H_o \).
- Reject \(H_o \) at level of significance \(\alpha \) if observed \(F_B^* > F(1 - \alpha; b - 1, (a - 1)(b - 1)) \).

Estimation of means

Estimation of factor level means \(\mu_{(i)} \)'s, \(\mu_{(j)} \)'s.

- Proceed as before, viz., use the unbiased estimator \(\overline{Y}_{(i,j)} \) for \(\mu_{(i)} \) and \(\overline{Y}_{(i,j)} \) for \(\mu_{(j)} \), but replace \(MSE \) by \(MSAB \) and use the degrees of freedom of \(MSAB \), that is \((a - 1)(b - 1) \).

 Thus, estimated standard errors:
 \[s(\overline{Y}_{(i,j)}) = \sqrt{\frac{MSAB}{b}}, s(\overline{Y}_{(i,j)}) = \sqrt{\frac{MSAB}{a}}. \]

Estimation of treatment means \(\mu_{ij} \)'s.

- \(\mu_{ij} = E(Y_{ij}) = \mu_{..} + \alpha_i + \beta_j = \mu_{i.} + \mu_{.j} - \mu_{..} \)

 Thus, an unbiased estimator:
 \[\widehat{\mu}_{ij} = \overline{Y}_{i.} + \overline{Y}_{.j} - \overline{Y}_{..} \]

 Estimated standard error:
 \[s(\widehat{\mu}_{ij}) = \sqrt{MSAB(\frac{1}{b} + \frac{1}{a} - \frac{1}{ab})} = \sqrt{MSAB(\frac{a + b - 1}{ab})} \]

1.2 Example: Insurance

An analyst studied the premium for auto insurance charged by an insurance company in six cities. The six cities were selected to represent different sizes (Factor A: small, medium, large) and different regions of the state (Factor B: east, west). There is only one city for each combination of size and region. The amounts of premiums charged for a specific type of coverage in a given risk category for each of the six cities are given in the following table.
Table 1: Numbers in parentheses are \(\widehat{\mu}_{ij} = \overline{Y}_{i.} + \overline{Y}_{.j} - \overline{Y}_{..}\)

<table>
<thead>
<tr>
<th>Factor A</th>
<th>East</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>140(135)</td>
<td>100(105)</td>
</tr>
<tr>
<td>Medium</td>
<td>210(210)</td>
<td>180(180)</td>
</tr>
<tr>
<td>Large</td>
<td>220(225)</td>
<td>200(195)</td>
</tr>
<tr>
<td>(\overline{Y}_{1.}) = 120</td>
<td>(\overline{Y}_{2.}) = 195</td>
<td>(\overline{Y}_{3.}) = 210</td>
</tr>
<tr>
<td>(\overline{Y}_{.1}) = 190</td>
<td>(\overline{Y}_{.2}) = 160</td>
<td>(\overline{Y}_{..}) = 175</td>
</tr>
</tbody>
</table>

Interaction plot based on the treatment sample means \(Y_{ij}\)'s: no strong interactions.

Sum of squares:
- Here \(a = 3\), \(b = 2\), \(n = 1\).
- \(\text{SSA} = 2[(120 - 175)^2 + (195 - 175)^2 + (210 - 175)^2] = 9300\).
- \(\text{SSB} = 3[(190 - 175)^2 + (160 - 175)^2] = 1350\).
- \(\text{SSAB} = (140 - 120 - 190 + 175)^2 + ... + (200 - 210 - 160 + 175)^2 = 100\).
- \(\text{SSTO} = \text{SSA} + \text{SSB} + \text{SSAB} = 10750\).

Hypothesis testing:
- Test \(H_0: \mu_{1.} = \mu_{2.} = \mu_{3.}\) (equivalently, \(H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0\)) at level 0.05.

Table 2: ANOVA Table for Insurance example

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A</td>
<td>(\text{SSA} = 9300)</td>
<td>(a - 1 = 2)</td>
<td>(\text{MSA} = 4650)</td>
</tr>
<tr>
<td>Factor B</td>
<td>(\text{SSB} = 1350)</td>
<td>(b - 1 = 1)</td>
<td>(\text{MSB} = 1350)</td>
</tr>
<tr>
<td>Error</td>
<td>(\text{SSAB} = 100)</td>
<td>((a - 1)(b - 1) = 2)</td>
<td>(\text{MSAB} = 50)</td>
</tr>
<tr>
<td>Total</td>
<td>(\text{SSTO} = 10750)</td>
<td>((ab - 1 = 5))</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{F}_A^* = \frac{\text{MSA}}{\text{MSAB}} = \frac{4650}{50} = 93\) and \(\text{F}(0.95; 2, 2) = 19\). Thus reject \(H_0\) at level 0.05.

- Estimation of \(\mu_{ij}\): e.g., \(\widehat{\mu}_{11} = \overline{Y}_{1.} + \overline{Y}_{..} - \overline{Y}_{..}\) = 120 + 190 - 175 = 135.
- Estimation of \(\mu_{ij}\) and \(\mu_{i.}\): e.g., \(\widehat{\mu}_{1.} = \overline{Y}_{1.}\) = 120.
 \(|s(\overline{Y}_{1.})| = \sqrt{\text{MSAB}} = \sqrt{50} = 5\). The 95% C.I. for \(\mu_{1.}\) is: \(\overline{Y}_{1.} \pm t(0.975; 2) \times s(\overline{Y}_{1.}) = 120 \pm 4.3 \times 5 = (98.5, 141.5)\).
1.3 Checking for the presence of interaction: Tukey’s test for additivity

For a two-factor study with \(n = 1 \), decide whether or not the two factors are interacting.

- In the no-interaction model, we assume that all \((\alpha \beta)_{ij} = 0 \).
- Idea: use a less severe restriction on the interaction effects, by assuming \((\alpha \beta)_{ij} = D \alpha_i \beta_j, i = 1, \ldots, a, j = 1, \ldots, b, \) where \(D \) is an unknown parameter.
- The model becomes:
 \[
 Y_{ij} = \mu_{..} + \alpha_i + \beta_j + D \alpha_i \beta_j + \epsilon_{ij}, i = 1, \ldots, a, j = 1, \ldots, b,
 \]
 under the constraints that
 \[
 \sum_{i=1}^{a}\alpha_i = \sum_{j=1}^{b}\beta_j = 0.
 \]

Estimation of \(D \)

- Multiply \((\alpha \beta)_{ij} \) on both sides of the equation:
 \[
 \alpha_i \beta_j Y_{ij} = \mu_{..} \alpha_i \beta_j + \alpha_i^2 \beta_j + \alpha_i \beta_j^2 + D \alpha_i^2 \beta_j^2 + \epsilon_{ij} \alpha_i \beta_j\]
- Sum over all pairs \((i, j) \):
 \[
 \sum_{i=1}^{a}\sum_{j=1}^{b}\alpha_i \beta_j Y_{ij} = D \sum_{i=1}^{a}\sum_{j=1}^{b}\alpha_i^2 \beta_j^2 + \sum_{i=1}^{a}\sum_{j=1}^{b} \epsilon_{ij} \alpha_i \beta_j \]
- Then
 \[
 \tilde{D} := \frac{\sum_{i=1}^{a}\sum_{j=1}^{b}\alpha_i \beta_j Y_{ij}}{\left(\sum_{i=1}^{a}(\overline{Y}_{i.} - \overline{Y}_{..})^2\right)\left(\sum_{j=1}^{b}(\overline{Y}_{.j} - \overline{Y}_{..})^2\right)} \approx D
 \]
- We have the following estimates:
 \[
 \hat{\alpha}_i = \overline{Y}_{i.} - \overline{Y}_{..}, \hat{\beta}_j = \overline{Y}_{.j} - \overline{Y}_{..}
 \]
- Thus, an estimator of \(D \) (which is also the least squares and the maximum likelihood estimator) is given by
 \[
 \hat{D} = \frac{\sum_{i=1}^{a}\sum_{j=1}^{b}(\overline{Y}_{i.} - \overline{Y}_{..})(\overline{Y}_{.j} - \overline{Y}_{..})Y_{ij}}{\left(\sum_{i=1}^{a}(\overline{Y}_{i.} - \overline{Y}_{..})^2\right)\left(\sum_{j=1}^{b}(\overline{Y}_{.j} - \overline{Y}_{..})^2\right)}
 \]

ANOVA decomposition

\[
SSTO = SSA + SSB + SSAB^* + SSRem^*.
\]

- Interaction sum of squares
 \[
 SSAB^* = \sum_{i=1}^{a} \sum_{j=1}^{b} \hat{D}^2 \hat{\alpha}_i^2 \hat{\beta}_j^2 = \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \alpha_i \beta_j Y_{ij}}{\left(\sum_{i=1}^{a}(\overline{Y}_{i.} - \overline{Y}_{..})^2\right)\left(\sum_{j=1}^{b}(\overline{Y}_{.j} - \overline{Y}_{..})^2\right)}
 \]
- Remainder sum of squares
 \[
 SSREM^* = SSTO - SSA - SSB - SSAB^*.
 \]
- Decomposition of degrees of freedom
 \[
 \text{df}(SSTO) = \text{df}(SSA) + \text{df}(SSB) + \text{df}(SSAB^*) + \text{df}(SSRem^*)
 \]
- Tukey’s one degree of freedom test for additivity: \(H_o: D = 0 \) (i.e., no interaction) vs. \(H_a: D \neq 0 \).
- \(\text{F} \) ratio
 \[
 F_{\text{Tukey}}^* = \frac{\text{SSAB}^*}{\text{SSRem}^*/(ab - a - b)} \sim F_{1, ab - a - b} \text{ under } H_o.
 \]
• Decision rule: reject \(H_o: D = 0\) at level of significance \(\alpha\) if \(F_{(Tukey)} > F(1, ab - a - b)\).

Example: Insurance

\[
\sum_{ij}(\overline{Y}_{i.} - \overline{Y}_{..})(\overline{Y}_{.j} - \overline{Y}_{..})Y_{ij} = -13500.
\]

\[
\sum_{i=1}^{a}(\overline{Y}_{i.} - \overline{Y}_{..})^2 = 4650, \text{ and } \sum_{j=1}^{b}(\overline{Y}_{.j} - \overline{Y}_{..})^2 = 450.
\]

\[
SSAB^* = \frac{(-13500)^2}{4650 \cdot 450} = 87.1.
\]

\[
SSRem^* = 10750 - 9300 - 1350 - 87.1 = 12.9.
\]

\[
ab - a - b = 3 \cdot 2 - 3 - 2 = 1.
\]

\[
F_{(Tukey)} = \frac{SSAB^*/1}{SSRem^*/1} = \frac{87.1}{12.9} = 6.8.
\]

When \(\alpha = 0.05, F(0.95; 1, 1) = 161.4 > 6.8\).

Thus, we can not reject \(H_o: D = 0\) at the 0.05 level, and we conclude that there is no significant interaction between the two factors.

Indeed, the p-value is \(p = P(F_{1,1} > 6.8) = 0.23\) which is not at all significant.

Contributors

- Scott Brunstein (UCD)
- Debasish Paul (UCD)