Test for Lack of Fit

Lack of Fit

 Degrees of freedom

 Example: Growth rate data

 Contributors

Lack of Fit

When we have repeated measurements for different values of the predictor variables \(X\), it is possible to test whether a linear model fits the data.

Suppose that we have data that can be expressed in the form:

\[
\{(X_j,Y_{ij}) : i = 1, \ldots, n_j; j = 1, \ldots, c\}\]

where \(c > 2\).

Assume that the data come from the model:

\[
Y_{ij} = \mu_j + \varepsilon_{ij}, \quad i = 1, \ldots, n_j; \quad j = 1, \ldots, c (1)\]

The null hypothesis in which the linear model holds is: \(H_0: \mu_j = \beta_0 + \beta_1X_j\), for all \(j = 1, \ldots, c\).

Here (1) is the full model and the model specified by \(H_0\) is the reduced model. We follow the usual procedure for the ANOVA, by computing the sum of squares due to errors for the full and reduced models.

Let \(\bar{Y} = \frac{1}{n_j} \sum_{i = 1}^{n_j} Y_{ij}\), and \(\bar{Y} = \frac{1}{c} \sum_{j=1}^{c} n_j \bar{Y}_j\).
\[
\frac{1}{n}\sum_{j=1}^{n}\sum_{i=1}^{n_{j}}Y_{ij}\), where \(n = \sum_{j=1}^{c}n_{j}\).
\]
\[
(SSTO = \sum_{j=1}^{c}\sum_{i=1}^{n_{j}}(Y_{ij} - \bar{Y}_{j})^2)\) and
\[
(SSPE = SSE_{full} = \sum_{j=1}^{c}\sum_{i=1}^{n_{j}}(Y_{ij} - \bar{Y}_{j})^2 = \sum_{j=1}^{c}\sum_{i=1}^{n_{j}}Y_{ij}^2 - \sum_{j=1}^{c}(n_{j}\bar{Y}_{j}^2)\]
\[
(SSE_{red} = SSE = \sum_{j=1}^{c}\sum_{i=1}^{n_{j}}(Y_{ij} - \beta_{0} - \beta_{1}X_{j})^2\]
\[
(SSLF = SSE_{red} - SSE_{full}).\]

Degrees of freedom
\[
[d.f.(SSPE) = n - c; d.f.(SSLF) = d.f.(SSE_{red}) - d.f.(SSPE) = (n - 2) - (n - c) = c - 2].\]

ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>SS</th>
<th>MS=SS/d.f.</th>
<th>F-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>SSR</td>
<td>MSR</td>
<td>MSR/MSE</td>
</tr>
<tr>
<td>Error</td>
<td>n-2</td>
<td>SSE=SSLF+SSPE</td>
<td>MSE</td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>c-2</td>
<td>SSLF</td>
<td>MSLF</td>
<td>MSLF/MSPE</td>
</tr>
<tr>
<td>Pure error</td>
<td>n-c</td>
<td>SSPE</td>
<td>MSPE</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n-1</td>
<td>SSTO=SSR+SSLF+SSPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reject \(H_{0} : (\mu_{j} = \beta_{0} + \beta_{1}X_{j}\) for all j)) at level \(\alpha\) if \(F^*_{LF} = \frac{MSLF}{MSPE} > F(1 - \alpha; c - 2, n - c)).\)

Example: Growth rate data

In the following example, data are available on the effect of dietary supplement on the growth rates of rats. Here \(X = \) dose of dietary supplement and \(Y = \) growth rate. The following table presents the data in a form suitable for the analysis.

<table>
<thead>
<tr>
<th>(j = 1)</th>
<th>(j = 2)</th>
<th>(j = 3)</th>
<th>(j = 4)</th>
<th>(j = 5)</th>
<th>(j = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{(1)} = 10)</td>
<td>(X_{(2)} = 15)</td>
<td>(X_{(3)} = 20)</td>
<td>(X_{(4)} = 25)</td>
<td>(X_{(5)} = 30)</td>
<td>(X_{(6)} = 35)</td>
</tr>
<tr>
<td>(n_{(1)} = 2)</td>
<td>(n_{(2)} = 2)</td>
<td>(n_{(3)} = 2)</td>
<td>(n_{(4)} = 3)</td>
<td>(n_{(5)} = 1)</td>
<td>(n_{(6)} = 2)</td>
</tr>
</tbody>
</table>

| \(Y_{(11)} = 73\) | \(Y_{(12)} = 85\) | \(Y_{(13)} = 90\) | \(Y_{(14)} = 87\) | \(Y_{(15)} = 75\) | \(Y_{(16)} = 65\) |
| \(Y_{(21)} = 78\) | \(Y_{(22)} = 88\) | \(Y_{(23)} = 91\) | \(Y_{(24)} = 86\) | \(Y_{(25)} = 63\) | \(Y_{(26)} = 63\) |
So, for this data, \(c = 6, n = \sum_{j = 1}^{c}n_{j} = 12\).

\[
\begin{align*}
\bar{Y}_{1} &= 75.5, \\
\bar{Y}_{2} &= 86.5, \\
\bar{Y}_{3} &= 90.5, \\
\bar{Y}_{4} &= 88, \\
\bar{Y}_{5} &= 75, \\
\bar{Y}_{6} &= 64.
\end{align*}
\]

\[
\begin{align*}
\text{SSTO} &= \sum_{j} \sum_{i} (Y_{ij} - \bar{Y})^2 = 1096.00 \\
\text{SSPE} &= \sum_{j} \sum_{i} (Y_{ij}^2 - \bar{Y}_{j}^2) = 79828 - 79704.5 = 33.50 \\
\text{SSE}_{\text{red}} &= \sum_{i} \sum_{j} (Y_{ij} - \beta_{0} - \beta_{1}X_{j})^2 = 891.73 \quad \text{(Note: } \beta_{0} = 92.003, \beta_{1} = -0.498) \\
\text{SSLF} &= \text{SSE}_{\text{red}} - \text{SSPE} = 891.73 - 33.50 = 858.23 \\
\text{d.f.} (\text{SSPE}) &= n - c = 6 \\
\text{d.f.} (\text{SSLF}) &= c - 2 = 4 \\
\text{MSLF} &= \frac{\text{SSLF}}{c - 2} = 214.5575 \\
\text{MSPE} &= \frac{\text{SSPE}}{n - c} = 5.5833
\end{align*}
\]

ANOVA Table:

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>204.27</td>
<td>204.27</td>
<td>(2.29)</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>891.73</td>
<td>89.173</td>
<td></td>
</tr>
<tr>
<td>Lack of fit Pure error</td>
<td>4</td>
<td>858.23</td>
<td>214.56</td>
<td>(38.43)</td>
</tr>
<tr>
<td>Pure error</td>
<td>6</td>
<td>33.50</td>
<td>5.583</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>1096.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(F(0.95;4,6) = 4.534\). Since \(F_{\text{LF}}^{\text{star}} = 38.43 > 4.534\), reject \(H_{0}: \mu_{j} = \beta_{0} + \beta_{1}X_{j}\) for all \(j\) at 5% level of significance.

Also, if you are testing \(H_{0}' : \beta_{1} = 0\) against \(H_{1}' : \beta_{1} \neq 0\), assuming that the linear model holds, as in the usual ANOVA for linear regression, then the corresponding test statistic \(F^{\text{star}} = \frac{\text{MSR}}{\text{MSE}} = 2.29\). Which is less than \(F(0.95;1,n-2) = F(0.95;1,10) = 4.964\). So, if one assumes that linear model holds then the test cannot reject \(H_{0}'\) at 5% level of significance.
Contributors

- Joy Wei
- Debasish Paul