Inference in Simple Linear Regression

Fact: Under normal regression model \((b_0, b_1) \) and \(SSE \) are independently distributed and
\[
\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}, \quad \frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}, \quad SSE \sim \sigma^2 \chi_{n-2}^2.
\]

Confidence interval for \(\beta_0 \) and \(\beta_1 \):
\[
100(1-\alpha)\% \text{ (two-sided) confidence interval for } \beta_i:
\]
\[
(b_i - t(1-\alpha/2;n-2) s(b_i), b_i + t(1-\alpha/2;n-2) s(b_i))
\]

for \(i=0,1 \), where \(t(1-\alpha/2;n-2) \) is the \(1-\alpha/2 \) upper cut-off point (or \((1-\alpha/2) \) quantile) of \(t_{n-2} \) distribution; i.e., \(\mathbb{P}(t_{n-2} > t(1-\alpha/2;n-2)) = \alpha/2 \).

Hypothesis tests for \(\beta_0 \) and \(\beta_1 \):
\[
H_0 : \beta_i = \beta_{i0} \quad (i=0 \text{ or } 1).
\]

Test statistic:
\[
T_i = \frac{b_i - \beta_{i0}}{s(b_i)}.
\]

1. Alternative: \(H_1 : \beta_i > \beta_{i0} \). Reject \(H_0 \) at level \(\alpha \) if \(\mathbb{P}(T_i > T_i^{\text{observed}}) < \alpha \).
2. Alternative: \(H_1 : \beta_i < \beta_{i0} \). Reject \(H_0 \) at level \(\alpha \) if \(\mathbb{P}(T_i < T_i^{\text{observed}}) < \alpha \).
3. Alternative: \(H_1 : \beta_i \neq \beta_{i0} \). Reject \(H_0 \) at level \(\alpha \) if \(\mathbb{P}(|T_i| > |T_i^{\text{observed}}|) < \alpha \).

Inference for mean response at \(X = X_h \)
• Point estimate: \(\hat{Y}_h = b_0 + b_1 X_h \).

Fact: \(\langle E(\hat{Y}_h) = \beta_0 + \beta_1 X_h = E(Y_h) \rangle \), \(\langle \text{Var}(\hat{Y}_h) = \sigma^2 \rangle \). Estimated variance is \(\langle s^2(\hat{Y}_h) = \text{MSE} \rangle \). Distribution: \(\langle \frac{\hat{Y}_h - E(Y_h)}{s(\hat{Y}_h)} \sim t_{n-2} \rangle \).

Confidence interval: \(\langle (1-\alpha) \% \text{ confidence interval for } E(Y_h) \rangle \) is \(\langle (\hat{Y}_h - t(1-\alpha/2; n-2) s(\hat{Y}_h), \hat{Y}_h + t(1-\alpha/2; n-2) s(\hat{Y}_h)) \rangle \).

Prediction of a new observation \(Y_{(h(new))} \) at \(X = X_h \)

• Prediction : \(\hat{Y}_{(h(new))} = \hat{Y}_h = b_0 + b_1 X_h \).

Error in prediction : \(\langle Y_{(h(new))} - \hat{Y}_{(h(new))} = Y_{(h(new))} - \hat{Y}_h \rangle \).

Fact : \(\langle \text{Var}(Y_{(h(new))} - \hat{Y}_h) = \sigma^2 + \sigma^2(\hat{Y}_h) = \sigma^2 \left[1 + \frac{1}{n} \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2} \right] \rangle \).

Distribution : \(\langle \frac{Y_{(h(new))} - \hat{Y}_h}{s(Y_{(h(new))} - \hat{Y}_h)} \sim t_{n-2} \rangle \).

Prediction interval : \(\langle (1-\alpha) \% \text{ prediction interval for } Y_{(h(new))} \rangle \) is \(\langle (\hat{Y}_h - t(1-\alpha/2; n-2) s(Y_{(h(new))} - \hat{Y}_h), \hat{Y}_h + t(1-\alpha/2; n-2) s(Y_{(h(new))} - \hat{Y}_h)) \rangle \).

• Confidence band for the regression line : At \(X = X_h \) the \((1-\alpha) \% \) confidence band for the regression line is given by \(\langle (\hat{Y}_h \pm w_{\alpha} s(\hat{Y}_h), \quad \text{where } \sim w_{\alpha} = \sqrt{2F(1-\alpha; 2, n-2)} \rangle \).

Here \(F(1-\alpha; 2, n-2) \) is the \((1-\alpha) \) upper cut-off point (or, \((1-\alpha) \) quantile) for the \(F_{2, n-2} \) distribution (\(F \) distribution with d.f. \((2, n-2) \)).

Example \(\langle \text{Example Index(1)} \rangle \): Simple linear regression

We consider a data set on housing price. Here \(Y = \) selling price of houses (in $1000), and \(X = \) size of house (100 square feet). The summary statistics are given below:
\(n = 19 \), \(\overline{X} = 15.719 \), \(\overline{Y} = 75.211 \)
\(\sum_i (X_i - \overline{X})^2 = 40.805 \), \(\sum_i (Y_i - \overline{Y})^2 = 556.078 \), \(\sum_i (X_i - \overline{X})(Y_i - \overline{Y}) = 120.001 \).

Estimates of \(\langle \beta_1 \rangle \) and \(\langle \beta_0 \rangle \):
\(b_1 = \frac{1}{n} \sum_i (X_i - \overline{X})(Y_i - \overline{Y}) = \frac{120.001}{40.805} = 2.941 \)

\(b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - 2.941 \times 15.719 = 35.145 \)

\(\hat{Y}_h = 35.145 + 2.941 \times X_h \)
\[b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - (2.941)(15.719) = 28.981. \]

- **Fit and Prediction:** The fitted regression line is \(Y = 28.981 + 2.941 X \). When \(X = 18.5 = X_h \), the predicted value, that is an estimate of the mean selling price (in $1000) when size of the house is 1850 sq. ft., is \(\widehat{Y}_h = 28.981 + (2.941)(18.5) \approx 83.39 \).

- **MSE:** The degrees of freedom (df) \(= n-2 = 17 \). \(SSE = \sum_i(Y_i - \overline{Y})^2 - b_1^2 \sum_i(X_i - \overline{X})^2 = 203.17 \). So, \(MSE = \frac{SSE}{n-2} = \frac{203.17}{17} \approx 11.95 \).

- **Standard Error Estimates:** \(s^2(b_0) = MSE \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_i(X_i - \overline{X})^2} \right] \approx 73.00 \), \(s(b_0) = \sqrt{s^2(b_0)} \approx 8.544 \).
 \(s^2(b_1) = \frac{MSE}{\sum_i(X_i - \overline{X})^2} \approx 0.2929 \), \(s(b_1) = \sqrt{s^2(b_1)} \approx 0.5412 \).

- **Confidence Intervals:** We assume that the errors are normal to find confidence intervals for the parameters \(\beta_0 \) and \(\beta_1 \). We use the fact that \(\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2} \) and \(\frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2} \) where \(t_{n-2} \) denotes the \(t \)-distribution with \(n-2 \) degrees of freedom. Since \(t(0.975;17) \approx 2.1098 \), it follows that 95% two-sided confidence interval for \(\beta_1 \) is \(2.941 \pm (2.1098)(0.5412) = (1.80, 4.08) \). Since \(t(0.95;17) = 1.740 \), the 90% two-sided confidence interval for \(\beta_0 \) is \(28.981 \pm (1.740)(8.544) = (14.12, 43.84) \).

Contributors

- Agnes Oshiro

(Source: Spring 2012 STA108 Handout 4)