Inference in Simple Linear Regression

Fact: Under normal regression model \((b_0,b_1)\) and \(SSE\) are independently distributed and
\(\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}\), \(\frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}\), \(SSE \sim \sigma^2 \chi_{n-2}^2\).

Confidence interval for \(\beta_0\) and \(\beta_1\):
\(100(1-\alpha)\%\) (two-sided) confidence interval for \(\beta_i\):
\((b_i - t(1-\alpha/2;n-2) s(b_i), b_i + t(1-\alpha/2;n-2) s(b_i))\)
for \((i=0,1)\), where \(t(1-\alpha/2;n-2)\) is the \(1-\alpha/2\) upper cut-off point (or \((1-\alpha/2)\) quantile) of \(t_{n-2}\) distribution; i.e., \(P(t_{n-2} > t(1-\alpha/2;n-2)) = \alpha/2\).

Hypothesis tests for \(\beta_0\) and \(\beta_1\):
\(H_0 : \beta_i = \beta_{i0}\) (\(i=0\) or \(1\)).
Test statistic: \(T_i = \frac{b_i - \beta_{i0}}{s(b_i)}\).

1. Alternative: \(H_1 : \beta_i > \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(\frac{b_i - \beta_{i0}}{s(b_i)} > t(1-\alpha;n-2)\). Or if, P-value = \(P(T_{n-2} > T_i^{observed}) < \alpha\).
2. Alternative: \(H_1 : \beta_i < \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(\frac{b_i - \beta_{i0}}{s(b_i)} < t(\alpha;n-2)\). Or if, P-value = \(P(T_{n-2} < T_i^{observed}) < \alpha\).
3. Alternative: \(H_1 : \beta_i \neq \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(\frac{|b_i - \beta_{i0}|}{s(b_i)} > t(1-\alpha/2;n-2)\). Or if, P-value = \(P(|T_{n-2}| > |T_i^{observed}|) < \alpha\).

Inference for mean response at \(X = X_h\)
• Point estimate: \(\widehat{Y}_h = b_0 + b_1 X_h \).

Fact: \(\E(\widehat{Y}_h) = \E(Y_h) \), \(\Var(\widehat{Y}_h) = \sigma^2(\widehat{Y}_h) \) = \(\sigma^2 \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2} \right] \). Estimated variance is \(s^2(\widehat{Y}_h) = \text{MSE} \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2} \right] \).

Distribution: \(\frac{\widehat{Y}_h - E(Y_h)}{s(\widehat{Y}_h)} \sim t_{n-2} \).

Confidence interval: \(100(1-\alpha)\% \) confidence interval for \(\E(Y_h) \) is \((\widehat{Y}_h - t(1-\alpha/2;n-2) s(\widehat{Y}_h), \widehat{Y}_h + t(1-\alpha/2;n-2) s(\widehat{Y}_h)) \).

Prediction of a new observation \(Y_{h(new)} \) at \(X = X_h \)

• Prediction: \(\widehat{Y}_{h(new)} = \widehat{Y}_h = b_0 + b_1 X_h \).

Error in prediction: \(Y_{h(new)} - \widehat{Y}_{h(new)} = Y_{h(new)} - \widehat{Y}_h \).

Fact: \(\sigma^2(Y_{h(new)}) = \sigma^2(Y_h) + \sigma^2(\widehat{Y}_h) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2} \right] \).

Estimate of \(\sigma^2(Y_{h(new)} - \widehat{Y}_h) \) is \(s^2(Y_{h(new)} - \widehat{Y}_h) = \text{MSE} \left[1 + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2} \right] \).

Distribution: \(\frac{Y_{h(new)} - \widehat{Y}_h}{s(Y_{h(new)} - \widehat{Y}_h)} \sim t_{n-2} \).

Prediction interval: \(100(1-\alpha)\% \) prediction interval for \(Y_{h(new)} \) is \((\widehat{Y}_h - t(1-\alpha/2;n-2) s(Y_{h(new)} - \widehat{Y}_h), \widehat{Y}_h + t(1-\alpha/2;n-2) s(Y_{h(new)} - \widehat{Y}_h)) \).

• Confidence band for the regression line: At \(X = X_h \) the \(100(1-\alpha)\% \) confidence band for the regression line is given by \(\widehat{Y}_h \pm w_\alpha s(\widehat{Y}_h), \) where \(w_\alpha \) = \(\sqrt{2F(1-\alpha; 2, n-2)} \).

Here \(F(1-\alpha;2,n-2) \) is the \((1-\alpha) \) upper cut-off point (or, \((1-\alpha)\) quantile) for the \(F_{2,n-2} \) distribution with d.f. \((2,n-2)\)).

Example \(\PageIndex{1} \): Simple linear regression

We consider a data set on housing price. Here \(Y = \) selling price of houses (in $1000), and \(X = \) size of house (100 square feet). The summary statistics are given below:

\(n = 19 \), \(\overline{X} = 15.719 \), \(\overline{Y} = 75.211 \)
\(\sum_i (X_i - \overline{X})^2 = 40.805 \), \(\sum_i (Y_i - \overline{Y})^2 = 556.078 \), \(\sum_i (X_i - \overline{X})(Y_i - \overline{Y}) = 120.001 \).

Estimates of \(\beta_1 \) and \(\beta_0 \) :

\[b_1 = \frac{\sum_i (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_i (X_i - \overline{X})^2} = \frac{120.001}{40.805} = 2.941 \]

\[b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - 2.941 \times 15.719 = 40.085 \]
and
\[
\hat{b}_0 = \overline{Y} - b_1 \overline{X} = 75.211 - (2.941)(15.719) = 28.981. \]

- **Fit and Prediction**: The fitted regression line: \(Y = 28.981 + 2.941X\). When \(X = 18.5 = X_h\), the predicted value, that is an estimate of the mean selling price (in $1000) when size of the house is 1850 sq. ft., is \(\hat{Y}_h = 28.981 + (2.941)(18.5) = 83.39\).

- **MSE**: The degrees of freedom (df) \(= n-2 = 17\). \(\text{SSE} = \sum_i(Y_i - \overline{Y})^2 - b_1^2\sum_i(X_i - \overline{X})^2 = 203.17\). So, \(\text{MSE} = \frac{\text{SSE}}{n-2} = \frac{203.17}{17} = 11.95\).

- **Standard Error Estimates**: \(s^2(b_0) = \text{MSE} \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_i(X_i - \overline{X})^2}\right] = 73.00\), \(s(b_0) = \sqrt{s^2(b_0)} = 8.544\).
 \(s^2(b_1) = \frac{\text{MSE}}{\sum_i(X_i - \overline{X})^2} = 0.2929\), \(s(b_1) = \sqrt{s^2(b_1)} = 0.5412\).

- **Confidence Intervals**: We assume that the errors are normal to find confidence intervals for the parameters \(\beta_0\) and \(\beta_1\). We use the fact that \(\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}\) and \(\frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}\) where \(t_{n-2}\) denotes the \(t\)-distribution with \(n-2\) degrees of freedom. Since \(t(0.975;17) = 2.1098\), it follows that 95% two-sided confidence interval for \(\beta_1\) is \((2.941 \pm 2.1098)(0.5412) = (1.80, 4.08)\). Since \(t(0.95;17) = 1.740\), the 90% two-sided confidence interval for \(\beta_0\) is \((28.981 \pm 1.740)(8.544) = (14.12, 43.84)\).

Contributors

- Agnes Oshiro

(Source: Spring 2012 STA108 Handout 4)