Confidence Interval Information

Confidence Intervals if \(\sigma \) is Known

Point estimate \(\pm \)

EBM (Error bound for a population mean)

*EBM is also known as the "Margin of Error"

\(\alpha \) = 1-CL

\(\frac{\alpha}{2} = \frac{1 - \text{CL}}{2} \)

Confidence Intervals if \(\sigma \) is Not Known

Use the “sample standard deviation” or \(s \) instead. Because of this, we have to use \(t \) distributions.

Point estimate \(\pm \)

EBM (Error bound for a population mean)

*EBM is also known as the “Margin of Error"

\(\bar{x} \pm t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n}}) \)

Confidence Intervals for Proportions

\(\hat{p} \) (\(p \) hat) OR \(p'(p) \) = sample proportion (think number of successes from Binomial Distributions)

If it’s wearing a “hat” it’s from a sample, not a population. No “hat” then it’s a population parameter!

Point estimate \(\pm \)

EBM (Error bound for a population mean)

\(\hat{p} = \frac{x \text{ (number of successes)}}{n \text{ (sample size)}} \)

*EBM is also known as the “Margin of Error”

\(\hat{p} \pm z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)
We use the “Standard Normal Distribution” to calculate \(z_{\frac{\alpha}{2}} \)

\[\frac{\alpha}{2} = 1 - CL \]

To find \(z_{\frac{\alpha}{2}} \) using Desmos:

\[\text{inversecdf(normaldist}(0,1), \text{CL} + \frac{\alpha}{2}) \]

We are trying to capture the true population mean (\(\mu \), this is a parameter) with this confidence interval!

\(\hat{q} \) or \(\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)

Where \(\hat{q} = 1 - \hat{p} \)

Point estimate \(\pm \) EBP (Error bound for a population proportion)

*EBP is also known as the “Margin of Error”

DF=Degrees of Freedom= \(\text{}(n - 1) \)

CL=Confidence Level

\[\frac{\alpha}{2} = \frac{1 - CL}{2} \]

We use the “Standard Normal Distribution” to calculate \(z_{\frac{\alpha}{2}} \)

To find \(z_{\frac{\alpha}{2}} \) using Desmos:

\[\text{inversecdf(normaldist}(0,1), \text{CL} + \frac{\alpha}{2}) \]

We are trying to capture the true population mean (\(\mu \), this is a parameter) with this confidence interval!

\(\hat{q} \) or \(\hat{p} \pm \text{EBP} \) (Error bound for a population proportion)

*EBP is also known as the “Margin of Error”

DF=Degrees of Freedom= \(\text{}(n - 1) \)

CL=Confidence Level

\[\frac{\alpha}{2} = \frac{1 - CL}{2} \]

We use the “Standard Normal Distribution” to calculate \(z_{\frac{\alpha}{2}} \)

To find \(z_{\frac{\alpha}{2}} \) using Desmos:

\[\text{inversecdf(normaldist}(0,1), \text{CL} + \frac{\alpha}{2}) \]

We are trying to capture the true population mean (\(\mu \), this is a parameter) with this confidence interval!
We are trying to capture the true population proportion (\(p\)), this is a parameter) with this confidence interval!

by Katryn Weston