# Analysis of variance approach to regression

We divide the total variability in the observe data into two parts - one coming from the errors, the other coming from the predictor.

### ANOVA decomposition

The following decomposition

$$\large Y_i - \overline{Y}$$   = $$\large (\widehat{Y_i} - \overline{Y})$$  +  $$\large (Y_i - \widehat{Y_i} )$$ ,  $$i=1,2,...,n.$$

represents the deviation of the observed response from the mean response in terms of the sum ofthe deviation of the fitted value from the mean plus the residual.

Taking the sum of squares, and after some algebra we have:

$$\large \sum_{i=1}^n (Y_i - \overline{Y})^2 = \sum_{i=1}^n (\widehat{Y_i} -\overline{Y})^2 + \sum_{i=1}^n (Y_i - \widehat{Y_i})^2,$$                (1).

or

$$\large SSTO = SSR +SSE$$

where $$SSTO = \sum_{i=1}^n (Y_i - \overline{Y})^2$$ and $$SSR = \sum_{i=1}^n (\widehat{Y_i} -\overline{Y})^2.$$  (1) is referred to as the ANOVA decomposition to the varitation in the response. Note that

$$\large SSR = b_1^2 \sum_{i=1}^n (X_i - \overline{X})^2 .$$

### Degrees of freedom

The degrees of freedom of different terms in the decomposition (1) are

d.f.( SSTO ) = n - 1,        d.f.( SSR ) = 1,        d.f( SSE ) = n - 2.

So, d.f.( SSTO ) = d.f.( SSR ) + d.f.( SSE ).

### Expected value and distribution

$$\large E ( SSE ) = ( n - 2) \sigma^2,$$ and $$\large E ( SSR ) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2.$$ Also, under the normal regression model, and under $$\large H_0 : \beta_1 = 0,$$

$$\large SSR \sim \sigma^2 \chi_1^2, SSE \sim \sigma^2 \chi_{n-2}^2,$$

and these two are independent.

### Mean squares

$$\large MSE = \frac{SSE}{d.f.(SSE)} = \frac{SSE}{n-2}, MSR = \frac{SSR}{d.f.(SSR)} = \frac{SSR}{1}.$$

Also, $$\large E ( MSE ) = \sigma^2 , E ( MSR ) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2.$$

### F ratio

For testing $$\large H_0 : \beta_1 = 0$$ versus $$\large H_1 : \beta_1 \neq 0,$$ the following test statistics, called the F ratio, can be used:

$$\large F^* = \frac{MSR}{MSE}.$$

The reason is that $$\frac{MSR}{MSE}$$ fluctuates around 1 + $$\frac{ \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2 }{\sigma^2}.$$ So, a significantly large value of $$F^*$$ provides evidence against $$H_0$$ and for $$H_1.$$

Under $$H_0, F^*$$ has the $$F$$ distribution with paired degrees of freedom (d.f.( SSR ), d.f.( SSE )) = (1, n - 2 ), (written $$F^* \sim F_{1, n - 2}).$$ Thus,

the test rejects $$H_0$$ at level of significance $$\alpha$$ if $$F^* > F( 1 - \alpha; 1, n - 2 ),$$

where  $$F( 1 - \alpha; 1, n - 2 )$$ is the $$(1 - \alpha )$$ quantile of $$F_{1; n - 2}$$ distribution.

### Relation between F-test and t-test

Check that $$\large F^* = ( t^* )^2.$$ where $$\large t^* = \frac{b_1}{s ( b_1 )}$$ is the test statistic for testing $$H_0 : \beta_1 = 0$$ versus $$H_1 : \beta_1 \neq 0.$$ So, the F-test is equivalent to the t-test in this case.

### ANOVA table

It is a table that gives the summary of the various objects used in testing $$H_0 : \beta_1 = 0$$ against $$H_1 : \beta_1 \neq 0.$$ It is of the form:

 Source df SS MS F* Regression d.f.(SSR) = 1 SSR MSR $$\frac{MSR}{MSE}$$ Error d.f.(SSE) = n - 2 SSE MSE Total d.f.(SSTO) = n - 1 SSTO

### Example: housing price data

We consider a data set on housing prices. Here Y = selling price of houses (in \$1000), and X = size of houses (100 square feet). The summary statistics are given below:

$$\large n = 19, \overline{X} = 15.719, \overline{Y} = 75.211,$$

$$\large \sum_i ( X_i - \overline{X} )^2 = 40.805, \sum_i ( Y_i - \overline{Y} )^2 = 556.078, \sum_i ( X_i - \overline{X} ) ( Y_i - \overline{Y} ) = 120.001.$$

#### (Example) - Estimates of $$\beta_1$$ and $$\beta_0$$

$$\large b_1 = \frac{\sum_i ( X_i - \overline{X} ) ( Y_i - \overline{Y} ) }{\sum_i ( X_i - \overline{X} )^2} = \frac{120.001}{40.805} = 2.941.$$

and

$$\large b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - (2.941)(15.719) = 28.981.$$

#### (Example) - MSE

The degrees of freedom (d.f.)  = $$\large n -2 = 17. SSE = \sum_i (Y_i - \overline{Y} )^2 - b_1^2 \sum_i ( X_i - \overline{X} )^2 = 203.17.$$ So,

$$\large MSE = \frac{SSE}{n - 2} = {203.17}{17} = 11.95.$$

Also, SSTO = 556.08 and SSR = SSTO - SSE = 352.91, MSR = SSR/1 = 352.91.

$$F^* = \frac{MSR}{MSE} = 29.529 = (t^* )^2,$$ where $$t^* = \frac{b_1}{s ( b_1 )} = \frac{2.941}{0.5412} = 5.434.$$ Also, F( 0.95; 1, 17 ) = 4.45, t( 0.975; 17) = 2.11. So, we reject $$H_0 : \beta_1 = 0.$$ The ANOVA table is given below.

 Source df SS MS F* Regression 1 352.91 352.91 29.529 Error 17 203.17 11.95 Total 18 556.08

### Contributors

• Valerie Regalia
• Debashis Paul